
Problems of the Lightweight Implementation
of Probabilistic Programming

Oleg Kiselyov
Tohoku University, Japan

oleg@okmij.org

Abstract
We identify two problems and an open research question with
Wingate et al. lightweight implementation technique for proba-
bilistic programming. Simple examples demonstrate that common,
what should be semantic-preserving program transformations dras-
tically alter the program behavior. We briefly describe an alterna-
tive technique that does respect program refactoring. There remains
a question of how to be really, formally sure that the MCMC accep-
tance ratio is computed correctly, especially for models with con-
ditioning and branching.

1. Summary
Recently Wingate et al. [3] proposed a general method of turn-
ing any programming language into a probabilistic programming
system with an MCMC inference. The key idea is the naming of
each random choice made by a program, and replacing actual non-
deterministic choices with the deterministic lookup in a database of
choices: the table of random numbers, so to speak.

Unfortunately, the technique was developed without consider-
ing equational laws, which define valid optimizations and program
transformations. Therefore, optimizing and refactoring a program,
moving some pieces of code to separate functions and libraries, or
inlining – all may change the program behavior in startling and
drastic ways.

This paper demonstrates on simple examples the problems of
[3], which we have verified on its implementation [5]. We briefly
mention an alternative technique, which implements incremental
MCMC and which does validate the expected equational laws and
program optimizations (see §6).

We advocate designing algorithms that are mindful and respect-
ful of program transformations and equational laws. We also wish
to prove that the key parts of our algorithm, specifically, computing
the MCMC acceptance ratio, are correct. We would like to pose a
question how to go about such a proof, especially in the case of
conditioning within conditional branches (see §5.)

2. Lightweight Implementation of Probabilistic
Programming

This section recalls the gist of the Wingate et al. technique [3]. We
will be using the Haskell notation, which is essentially the notation
of [2].

A probabilistic program expresses a stochastic model. For ex-
ample, the program:

p1 = do {x ← uniform 0 1; bern x}

describes the composition of the uniform and Bernoulli dis-
tributions. One may also read it operationally: uniform 0 1 ::
Prob Float produces a floating-point number x uniformly chosen

within the interval [0,1]; bern x then returns True or False with the
probability x. Here Prob is some probabilistic monad.

The insight of Wingate et al. is to think of the stochastic program
p1 as a deterministic program

p1Det = do let n1 = 1
x ← lookup n1 uniform [0,1]
let n2 = 2
lookup n2 bern x

where each stochastic primitive (elementary random primitives,
or ERPs, in [3] terminology) is implemented as a lookup in the
global database D. Then Prob is just the state monad State D.
(Likewise, a pseudo-random generator may be thought of as a
lookup in the table of random numbers). The variables n1 and n2
in p1Det are the names, or lookup keys, identifying each instance
of the stochastic operation. The lookup operation uses the name
to find and return the corresponding sample from the database. If
the database has no record for the name n, it is created by sampling
from the ERP’s distribution and recording the sample, the sampling
parameters such as the range [0,1] for uniform, and the sample’s log
likelihood (LL). Re-running p1Det with the same D produces the
same results.

The second key idea of Wingate et al. is to use MCMC to evolve
the values recorded in the database. For example, for the (single-
site) Metropolis-Hastings (MH) MCMC algorithm, we pick up one
recorded choice, modify it, re-run the program computing the new
result and its LL, and accept or reject the modification. Repeating
the process many times effectively turns the deterministic p1Det
into the stochastic p1: the sequence of results produced by re-
running p1Det is the sequence of samples from p1’s distribution.

When MH picks and modifies the record for n1 in p1Det
(in other words, resamples x from xold to xnew), the rest of the
database stays the same. Therefore, lookup n2 returns the same
value it did on the previous run of the program. However, that
old value is now drawn from the different distribution, bern xnew,
and hence has the different LL. The difference in LL determines
whether to accept or reject the proposal to resample x.

3. Unit Transformation
We now demonstrate the first problem with the technique. It may
seem trivial and easy to explain (away). It is a simple illustration of
more serious things to come.

Let us consider the program p2, quite similar to p1

p2 = do {x ← uniform 0 1; dirac x}
If we take probabilistic programs to represent (extended) graphical
models, then the trivial program return e :: Prob t corresponds
to the model with the degenerate discrete random variable, that
is, Dirac delta. The original Hakaru implementation [5] indeed
represented return a in this way. Although dirac and return are
synonymous, we will write dirac to highlight that it is also an ERP.



Suppose on the first run x is sampled to 0.5. The program will
return 0.5 with the database

[(1, {sample= 0.5, distr= uniform, parm= [0,1], ll= −0.5}),
(2, {sample= 0.5, distr= dirac, parm = 0.5, ll = 0})]

Assume that on the second run, MH proposes to resample x to 0.7.
It modifies the first record in the database, to have the different
sample and ll, and reruns the program. Now, uniform 0 1 returns
0.7, as recorded in the new database. However, dirac 0.7 still re-
turns 0.5 since its database record stays the same. It comes, how-
ever, from the different distribution, dirac 0.7. Clearly, dirac 0.7
can never yield 0.5 and hence the LL of the old sample in the new
distribution is − inf . Therefore, the proposal to resample x will be
rejected. Every proposal to modify x will likewise be rejected and
so the MCMC chain of p2 repeats one value over and over.

Mathematically, composing with the Dirac distribution is the
identity, so p2 should be equivalent to just uniform 0 1, whose
Markov chain is anything but constant. The technique of [3] thus
fails the Dirac composition law.

One may be tempted to dismiss the problem: the chain fails to
mix (that is, all proposals are rejected) because the original [3] al-
gorithm was simplistic: it considered only proposals that update
only one record in the database. If we entertain more general pro-
posals, of modifying several records in the database in a correlated
way, the problem disappears.

However, more general proposals require the interface for the
user to tell the system how to make correlated multi-record pro-
posals. Moreover, the end user has to know how to make a good
proposal, which is a non-trivial skill. Pestering the end user for
non-trivial hints is bothersome for such a simple problem. Once
we know which equational laws we have to satisfy, it is quite easy
to account for them and make the problems involving dirac to go
away. Hakaru10 implementation described in §6 does exactly that.
It satisfies the law of composing with Dirac (that is, the unit law of
the Prob monad) by construction.

4. Conditional Branches
The more serious problem with [3], which infects the key technical
contribution of that paper, shows up in models with conditional
branches. Consider

p3 = do
c ← bern 0.5
if c then uniform 0 1

else uniform 10 20
return c

The Markov chain of that program turns out to be the constant
stream, of all True or all False. This is surprising given that the
program merely returns the sample from bern 0.5, the coin flip.

To see the problem we show the corresponding transformed,
deterministic program, with the name assignment.

p3Det = do
let n1 = 1
c ← lookup n1 bern 0.5
let n2 = 2
if c then lookup n2 uniform [0,1]

else lookup n2 uniform [10,20]
return c

The two uniform choices in the branches of if receive the same
name. This is the key, intentional property of both imperative and
functional name assignment algorithms of [3] (Fig. 2 and 3 in the
paper, resp.)

Suppose on the first run x is sampled at True. The program will
return True and its database will contain

[(1, {sample= True, distr= bern, parm= 0.5, ll= −0.5}),
(2, {sample= 0.5, distr= uniform, parm= [0,1], ll= −0.5})]

Assume MH proposes to resample x to False and changes the
database accordingly. When we re-run the program on the updated

database, lookup n2 uniform [10,20] finds the existing record for
node 2 and verifies it corresponds to the uniform distribution. Thus
the lookup operation returns the old sample, 0.5, but rescores it to
the new parameters, uniform [10,20]. Clearly that old sample has
the zero probability of coming from the interval [10,20] and hence
the new LL will be − inf and the proposal is rejected. The chain
will have only True samples.

The addition of an (irrelevant!) dirac cures the problem
p4 = do c ← bern 0.5

if c then do {dirac 1; uniform 0 1}
else uniform 10 20

return c

The Markov chain of this program has the uniform mixture of True
and False, as expected of bern 0.5. Such a drastic change in be-
havior upon the addition of an irrelevant code is the consequence
of the fact that refactoring, however innocuous, may change the
name assignment. Wingate et al algorithm is very sensitive to the
choice of node names: it tries, for the sake of performance, to ex-
plore sharing as much as possible, even if the sharing is accidental
and unjustified.

Thus the technique of [3] is sensitive to what should be irrel-
evant details such as code layout and code organization. Simple
refactoring could drastically change the program behavior.

In the presence of conditional branches, the program may make
different sequences of choices across different runs. Wingate et
al. hence introduce the concepts of “fresh” and “stale” database
records to describe the newly introduced choices and those now
hidden in inactive conditional branches. The acceptance ratio cal-
culation takes into account only the difference in the number of
fresh vs. stale choices. This is correct, albeit given in [3] with no
explanation. The likelihoods of fresh and stale records are ignored:
if we look carefully at the acceptance ratio formula [3, p.3], we
see that the “fresh randomness” occurs explicitly in the denomina-
tor – and also in the numerator of the ratio, as part of the likelihood
p(x’) of the new program run. The same holds for the “stale ran-
domness”. This is again correct (and again, given with no explana-
tion) – but only until conditioning enters the scene.

5. Branching and Conditioning
We come to the thorny, still open problem of conditioning within
conditional branches. This issue per se is not the problem of
Wingate et al. [3] since that paper, although mentioning condition-
ing in text, does not give an algorithm that includes conditioning.
When using the Wingate et al. method, the implementors have to
decide for themselves how to handle conditioning. The most ‘nat-
ural’ way is to follow the hints in the Wingate et al. text and treat
random variables whose values have been observed quite like the
ordinary ERP – which, however, cannot be resampled. That was
the approach implemented in the original Hakaru [5]. We now
show that it is problematic.

Consider the following program
pcond = do
x ← categorical [(1,0.5), (2,0.5)]
if x== 1 then return x

else do
(True 8 conditioned 8 bern) 0.5
categorical [(20,0.5), (21,0.5)]

In the sampling semantics, we draw 1 or 2 with equal probability. If
1 is drawn, it is returned. Otherwise, we flip a coin and assert that
it lands head. Then we draw 20 or 21 with equal probability and
return the result. Although this model may be regarded as exotic,
it is just a detailed, re-written version of the more natural, easier to
understand model:

pcond’ = do
x ← categorical [(1,0.5), (2,0.5)]



(y, z) ← if x== 1
then return (True,x)
else do

y ← bern 0.5
z ← categorical [(20,0.5), (21,0.5)]
return (y, z)

observe (y == True)
return z

That is, we draw x, sample from the joint distribution (y,z) and
return z conditioned on y being the fixed value True. The joint
distribution (y,z) is clearly (True,1) with the probability 1

2
, and

(True,20), (True,21), (False,20) and (False,21) – each with the
probability 1

8
. Conditioning on the first component of the pair being

True gives the distribution of the second component as 1 with the
probability 2

3
, and 20 and 21 with the probability 1

6
.

Implementing the pcond model as the program in the original
Hakaru

pcond1 = do
x ← categorical [(1,0.5), (2,0.5)]
if x== 1 then do

(True 8 conditioned 8 dirac ) True −− Why we need this?
return x

else do
dirac True −− Why we need this?
(True 8 conditioned 8 bern) 0.5
categorical [(20,0.5), (21,0.5)]

and obtaining 100,000 samples gives the estimate of the model
distribution as [(1,0.57),(20,0.21),(21,0.22)], which differs from
the expected. It is an open research problem how to perform MH
for this model.

The reader may be wondering about the superfluous statements
in pcond1 such as dirac True. The reader is encouraged to guess
what happens if we remove them. (For a hint, see §4.)

6. Incremental Hakaru
Hakaru v10 (hereafter, Hakaru10) [2] is a probabilistic program-
ming language embedded in Haskell. It lets the user specify a va-
riety of models using discrete or continuous distributions and con-
ditioning. The models may contain branches (’if’-statements). It is
the complete re-write of [5]. Like the original Hakaru and Church,
Hakaru10 relies on MH for inference.

The main feature of Hakaru10 is the incrementality of the in-
ference algorithm: upon resampling, only those computations are
re-done that (transitively) depend on the resampled value.

To this end, the incremental MCMC maintains the DAG of
dependencies and stores the intermediate results so they do not
have to be recomputed. Despite this, the incremental MCMC seems
to use less memory compared to the original Hakaru. The DAG of
dependencies is static: it is produced at the first program run and not
modified afterwards, even if the model has conditional branches.

Hakaru10 guarantees by construction that the following LHS
and RHS models have the identical behavior (the identical se-
quences of samples):

do x ← dirac c
e

do let x = c
e

do x ← e
dirac x e

(where e is an arbitrary submodel and c is an arbitrary constant.)
Hakaru10 ensures that inlining and replacing a submodel with
a primitive preserve the program behavior (chains). Also unlike
[3], it supports sharing of submodels. Hakaru10 therefore uses its
own formula for computing the acceptance ratio, derived from the
common sense considerations and verified experimentally (on test
models whose behavior is known analytically). We would like to be
able to derive the acceptance ratio formally or to rigorously prove

its correctness. We pose this as an open problem and are looking
for suggestions and examples.

In related work, [1] demonstrate the problem of the algorithm
in [3] on different examples, exhibiting convergence to an incorrect
distribution. The paper [1] as well as [4] propose different sampling
algorithms to avoid the problems.

Acknowledgments
I thank Rob Zinkov and Chung-chieh Shan for many discussions.
Comments and suggestions by Daniel E. Huang and anonymous
reviewers are gratefully acknowledged. The work on Hakaru10 was
supported by DARPA grant FA8750-14-2-0007.

References
[1] C.-K. Hur, A. Nori, S. Rajamani, and S. Samuel. A provably correct

sampler for probabilistic programs. In FSTTCS 2015, 2015.
[2] O. Kiselyov. Embedded probabilistic programming language with the

incremental MCMC. Proc. Workshop on Programming and Program-
ming Languages (PPL), Mar. 2016.

[3] D. Wingate, A. Stuhlmüller, and N. D. Goodman. Lightweight im-
plementations of probabilistic programming languages via transforma-
tional compilation. In AISTATS 2011, number 15, pages 770–778, Cam-
bridge, 2011. MIT Press. Revision 3. February 8, 2014.

[4] F. Wood, J. W. van de Meent, and V. Mansinghka. A new approach
to probabilistic programming inference. In AISTATS 2014, number 33,
pages 1024–1032, Cambridge, 2014. MIT Press.

[5] R. Zinkov and C.-c. Shan. Probabilistic programming language Hakaru.
v1. DARPA PPAML Report, 2014.


