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Abstract

Strymonas is a code-generation–based library (embedded
DSL) for fast, bulk, single-thread in-memory stream process-
ing – with the declarative description of stream pipelines
and yet achieving the speed and memory e�ciency of hand-
written state machines. It guarantees complete stream fusion
in all cases.
So far, strymonas has been used on small examples and

micro-benchmarks. In this work, we evaluate strymonas on
a large, real-life application of Software-De�ned Radio – FM
Radio reception, – contrasting and benchmarking it against
the synchronous data�ow system StreamIt, and the state-of-
the art: GNU Radio.

Strymonas, despite being declarative, single-thread single-
core with no explicit support for SIMD, no built-in window-
ing or convolution, turns out to o�er portable high perfor-
mance, well enough for real-time FM Radio reception. It is
on par with (or, on Raspberry Pi Zero, outstripping) GNU
Radio, while providing static guarantees of complete fusion
and type safety.

CCS Concepts: • Software and its engineering→ Func-

tional languages;Domain speci�c languages; Source code
generation.

Keywords: stream fusion, stream processing, DSL, software-
de�ned radio, code generation
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1 Introduction

Strymonas [3, 5] is the stream processing library that achieves
the highest performance of existing OCaml, Java Stream,
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Scala, etc. streaming libraries, attaining the speed and mem-
ory e�ciency of hand-written C state machines. It supports
�nite and in�nite streams with the familiar interface: declar-
atively assembling stream processing pipelines like Xmas
lights, from combinators likemap, filter, zip, flat_map, take,
take_while, drop, drop_while – with no restrictions so long
as the types match. The combinators are in turn built on a
lower-level, spartan but also declarative, interface of state-
ful streams, which, in addition, supports accumulating map,
compression, etc.

Strymonas statically guarantees complete fusion: if each op-
eration in a pipeline individually runs without any function
calls and memory allocations, the entire streaming pipeline
runs without calls and allocations. Thus strymonas per se
introduces not even constant-size intermediary data struc-
tures. Complete fusion is mainly the space guarantee: the
ability to run the processing loop without any GC or even
stack allocations. Avoiding closures and the repeated con-
struction/disposal of tuples, option values, etc. also notably
improves performance, in our experience.
The complete fusion is achieved (see [3]) by the careful

selection of core (or, ‘raw’) stream-processing primitives
and the normalization-by-evaluation to bring a pipeline to a
normal form, from which the completely fused code can be
generated.
Strymonas is based on assured code generation, generat-

ing OCaml, Scala – and, relevant for the present paper, C99.
The latter needs no particular runtime and can be automati-
cally vectorized, as we shall see.
Previously, [3, 5], strymonas was evaluated on micro-

benchmarks. The present paper is centered on a macro-
benchmark: a large, realistic example of digital signal process-
ing (DSP), speci�cally: Software-De�ned Radio. Software-
de�ned radio (SDR) [1] is performing all steps of radio signal
processing (save for the antenna reception or transmission)
not via analog electric circuits but digitally in software, typi-
cally running on an ordinary computer. In DSP, the signal is a
potentially in�nite stream of samples. Therefore, processing
is necessarily con�ned to a �nite subsequence, of the most
recent samples: the moving window [8, 13]. A particular case
of window processing is digital �ltering [9], a fundamental
operation in DSP – which is also the principal component
of SDR, with the most impact on performance.
Strymonas does not provide any windowing primitives.

Therefore, the �rst research question is expressiveness: can
windowing and digital �ltering be e�ciently implemented

This work is licensed under a Creative Commons Attribution 4.0 Interna-
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with the current strymonas? If strymonas has to be extended,
do the extensions compromise the complete fusion?
The most well-known and prototypical example of SDR

is GNU Radio:1 a pervasively-used SDR framework, not just
by hobbyists but in industrial and government applications.
GNU Radio also uses code-generation to a degree: it assem-
bles C++ components (with some hand-written assembly
kernels) using Python or Graphical interface. There is little
type safety, and hence few guarantees that the assembled
code will compile; bugs are easy to introduce and hard to
�nd.2

Therefore, the main research question is: can strymonas,
while providing type safety, static fusion guarantees, �ne-
grain declarative interface, also attain the performance of
GNU Radio on a characteristic application, real-time FM
radio reception?
Real-time FM reception is no simple matter: the HackRF

One board3 often used to acquire and digitize radio signals
sends data at the rate of 2 to 20 million samples per second. A
typical 3GHz CPU may then spend no more than 1500 CPU
cycles per sample. For comparison, on a high-class Sandy
Bridge class E Intel CPU, L3 cache access may take up to 38
cycles; main memory access more than 100 cycles. Keeping
in mind that FM reception involves 64-tap (or 65-tap) �lters
withmany �oating-point operations (see §4.2), this is a rather
tight cycle budget.
GNU Radio does not attain complete stream fusion: its

processing pipelines have overhead due to function calls and
accompanying register saves/restores and resets of �oating-
point processing, etc. GNU Radio compensates by using
hand-written assembly kernels and exploring multiple cores
and parallelism. Strymonas, on the other hand, is single-
core single-thread library and relies on high-quality code
generation for its performance. Whether this is su�cient to
attain the performance needed for FM reception is the third
question to answer in the present research.
Thus, our contributions are:

1. The design and implementation of windowing and FIR
(Finite Impulse Response) �ltering, with predictable
and high performance: §3. Our design aimed to ex-
ploit static information (window size, sliding amount,
padding) and to lend itself to automatic vectorization.
The implementation uses the existing strymonas in-
terface as is, thus con�rming its expressivity – which
also ensures the complete fusion by construction.

2. The implementation of a realistic, practical applica-
tion – FM Radio reception – and its evaluation/macro-
benchmarking: §4.We have actually implemented three
related applications:

1h�ps://wiki.gnuradio.org/
2see, for example, h�ps://github.com/gnuradio/gnuradio/issues/6103#

issuecomment-1279650539
3h�ps://hackrf.readthedocs.io/en/latest/index.html

(a) using the high-level algorithm from StreamIt: §4.1.
StreamIt is a synchronous data�ow system whose
design and operation di�er signi�cantly from stry-
monas. Nevertheless we are able to implement its
high-level algorithm in strymonas, and con�rm the
correctness. We also check the performance against
a StreamIt reference implementation: hand-written
C code.

(b) using the high-level GNU Radio algorithm based
on quadrature frequency demodulation: §4.2. (To re-
mind, in design and operation, GNU Radio and stry-
monas di�er signi�cantly.) We have benchmarked
strymonas on an Intel (macOS) platform and veri-
�ed that we attain the GNU Radio performance. We
then con�rmed that our implementation (using the
HackRF One board for signal acquisition and �play

for play-out) indeed achieves the real-time reception
of a local FM radio station: §4.3.

(c) To verify the portability of our implementation in (b)
we recompiled it on the relatively low-end Raspberry
Pi Zero, and repeated the benchmarks, thus con�rm-
ing the competitive performance of strymonas. Al-
though barely, we managed to achieve real-time FM
reception with strymonas on that platform.

We start by recalling the background: the strymonas li-
brary and software-de�ned radio.

The code for the benchmarks, in particular, StreamIt bench-
mark and the code for the running example, is freely available
in the strymonas repository h�p://strymonas.github.io/.

2 Background: Strymonas on an SDR
Example

Strymonas is a DSL that generates high-performance single-
core stream processing code from declarative descriptions of
stream pipelines and user actions – something like Yacc. Un-
like (ocaml)yacc, strymonas is a DSL embedded in OCaml.4

Therefore, it integrates as is with the existing OCaml code
and tools. Any typing or pipeline mis-assembling errors are
reported immediately (even during editing).
We illustrate strymonas on the running example chosen

to show o� its facilities, and also illustrate DSP. One may
regard the example as a simple but representative example
of radio processing – speci�cally, AM Radio. The full code
of the example is included in the strymonas repository.5

Radio, originally, is transmitting audio over long distances.
The audio (also called message) signal has relatively low
frequency and, hence, propagates poorly and is di�cult to
e�ectively transmit and receive. Therefore, radio uses a high-
frequency carrier wave, whose parameters (amplitude, phase)
are the function of (i.e., modulated by) the message signal

4There is also a Scala version.
5h�p://strymonas.github.io/
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[6]. Our �rst task then is to generate the carrier wave: to
build a sine wave generator.6

let sine_wave (� :int) (5 :float) : F32.t cstream =

iota (C.int 0) ⊲

map F32.(fun i→ of_int i /. lit (Float.of_int � )) ⊲

map F32.(( ∗. ) (lit Stdlib.(g ∗. 5 ))) ⊲

map F32.sin.invoke

where � is the sampling rate (Hz, or samples per second), 5
is the frequency (Hz), and g is 2c . (For clarity, we explicitly
write type annotations although none are needed.)

Like Yacc, strymonas uses two languages: one to describe
the structure of the stream pipeline, and the other to specify
the semantic actions such as mapping transformations, etc.
Since strymonas is an embedded DSL, both languages are
represented by OCaml functions (combinators), but from two
di�erent namespaces (signatures). Stream structure combi-
nators such as iota and map, Fig. 1, produce, consume, or
transform values of the type U cstream, where U is a base
type (U cstream is a convenient specialization of the more
general U stream, where U can be a tuple, structure, etc. type).
The iota combinator produces an in�nite stream of consecu-
tively increasing integers starting with the given one; map

should be self-explanatory. The combinators are typically
composed via ⊲: the right-to-left application operator.
Semantic actions (i.e., the arguments of stream combina-

tors) are described via backend combinators, Fig. 2, which
build values of the abstract type U exp representing the ex-
pressions and U stm for statements of the target code: C,
OCaml, etc. A backend hence is a �rst-order statement-
oriented imperative language with mutable references and
arrays. We shall assume one such backend in scope, as the
module named C. It has a submodule F32 for short-�oat ex-
pressions of the target language, of the abstract type F32.t
(we abbreviate C.F32 as F32). In contrast, Stdlib and its sub-
module Float refer to the OCaml standard library; therefore,
their operations are performed at the code-generation time,
with the result becoming the literal number in the back-
end code (F32.lit operation).7 The notation F32.(4G?) is the
abbreviation for let open F32 in 4G? , that is, making F32 op-
erations available within 4G? without quali�cation.

The code sine_wave clearly corresponds to the mathemat-
ical expression sin(2c 5 8/� ), for 8 = 0, 1, . . ., but written in
the left-to-right information-�ow style common in electrical
engineering.

6The left-associative in�x operator ⊲ of low precedence is the inverse appli-

cation. The related right-associative in�x operator @@ of low precedence,

appearing later, is application: x + 1 ⊲ f is the same as f @@ x + 1 and is the

same as f (x + 1) but avoids the parentheses.
7In particular, in F32.of_int i, i is a statically unknown backend integer

value; whereas in F32.lit (Float.of_int j), j is the statically known OCaml

integer.

type U stream

type U cstream = U exp stream

type U emit = (U → unit stm) → unit stm

val iota : int exp→ int cstream

val from_to : int exp → int exp → int cstream

val of_arr : U arr→ U cstream

val infinite : U emit→ U stream

val initializing_ref : Z exp→

(Z mut→ U stream)→ U stream

val map : (U exp→ V exp) → U cstream → V cstream

val flat_map : (U exp → V stream) →

U cstream → V stream

val map_accum :

(Z exp→ U exp→

(Z exp → V exp → unit stm) → unit stm) →

Z exp → U cstream → V cstream

val map_raw : ?linear:bool → (U → V emit) →

U stream → V stream

val zip_with : (U exp → V exp→ W exp)→

(U cstream→ V cstream→ W cstream)

val iter : (U → unit stm) → U stream→ unit stm

Figure 1. Stream combinators (abbreviated and simpli�ed
for presentation). Types exp, stm, arr and mut refer to ex-
pressions, statements, arrays and mutable references of the
target code, see Fig. 2. In map_raw, the notation ?linear:bool

means an optional boolean argument. If not speci�ed, the
default values (true in this case) is used.

AMmedium-wave radio has the frequency band 531–1,602
kHz with 9 kHz spacing. Let’s then make our carrier at AM
540 (kHz):

let carrier : F32.t cstream = sine_wave �2 540_000.

where the sampling rate �2 is 3,360 kHz (a bit more than
twice the highest frequency in the medium-wave band).
We take the message signal to be of unit amplitude and

given as an array (which may be an mmap-ed array):

let message : F32.t C.arr→ F32.t cstream = of_arr

It is a low-frequency signal, and hence has a much lower
sampling rate, �< , which we take to be 48 kHz: the standard
DVD/HDMI sampling rate.8

The carrier and the message signals are sampled at di�er-
ent rates. Before attempting modulation, we have to bring

8This sampling rate is an overkill for the real AM Radio, which does not pos-

sess bandwidth for the DVD-quality transmission. Amplitude modulation,

however, is used in other contexts, as we shall see in §4.2.
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type U exp (∗ Abstract type of expressions ∗)

type U stm (∗ Statements ∗)

type U arr (∗ Arrays ∗)

type U mut (∗ Mutable references ∗)

type U tbase (∗ Type representation for base types ∗)

val tint : int tbase

val int : int → int exp

val ( + ) : int exp → int exp → int exp

. . .

(∗ sequencing ∗)

val (@.) : unit stm→ U stm→ U stm

val cond : bool exp → U exp→ U exp→ U exp

val if_ : bool exp → unit stm→ unit stm→ unit stm

(∗ let−binding ∗)

val letl : U exp→ ((U exp → l stm) → l stm)

val dref : U mut → U exp

val (:=) : U mut→ U exp→ unit stm

val incr : int mut → unit stm

val decr : int mut → unit stm

(∗ foreign function type: backends for the constructors ∗)

type 'sg � = private {invoke : 'sg}

module F32 : sig (∗ short floats ∗)

type t

val tbase : t tbase (∗ type representation ∗)

val lit : float→ t exp

val of_int : int exp→ t exp

val ( +. ) : t exp→ t exp→ t exp

val ( ∗. ) : t exp→ t exp→ t exp

val ( /. ) : t exp→ t exp→ t exp

val sin : (t exp→ t exp) �

end

Figure 2. Backend code-generating combinators for the tar-
get language (abbreviated). In the present paper, they are
assumed to be in a module named C. We abbreviate C.F32
as F32.

them to the same rate: that is, upsample the message signal.
We use for the sake of example the simplest left-neighbor
upsampling. For higher �delity one would use linear, etc.
upsampling – which are actually a form of �ltering, to be
discussed in detail later.

let upsample (�B :int) (�3 :int) : U stream→ U stream =

let k = �3 / �B in assert (k > 1 && k ∗ �B = �3 );

flat_map (fun s → from_to C.(int 0) (C.int (k − 1)) ⊲

map (Fun.const s))

The left-neighbor upsampling by the factor k is thus mapping
each sample s into a �nite stream (chunk) of length k con-
taining just the sample s, and concatenating all these chunks.
The mapping-concatenating is also called �at-mapping. A
chunk is created from a 0..k−1 stream (build by from_to)
by replacing each element with s. Although intuitive, the
whole pipeline (especially mapping by const s) seems quite
naive – enough to start worrying about performance. As
we shall see later, the worry is unfounded. The strength of
strymonas is that pipelines may be naive, but still fully fused
and performant.
The amplitude modulation is de�ned as (1 + `<(C))2 (C)

where<(C) is the message signal, 2 (C) is carrier, and ` (cho-
sen to be close but less than 1) is the modulation index.

let am_modulate (ms:F32.t cstream) (�< :int)

(cs:F32.t cstream) (�2 :int) (`:float) : F32.t cstream =

zip_with (fun m c→ F32.((lit 1. +. lit ` ∗. m) ∗. c))

(upsample �< �2 ms) cs

The combinator zip_with performs a binary operation (spec-
i�ed by its �rst argument) on two streams elementwise.
The pipeline is completed by terminating it by a stream

consumer, such as fold, reducing the stream to a single value.
Such full accumulation is rare in signal processing, however.
More common is outputting the processed signal samples:
to be stored in a �le, sent over the network or pushed to
a sound card. For output, we rely on the existing backend
function (which could be inlined), invoked via the FFI:

val write_s16_le : (F32.t C.exp → unit C.stm) C.�

It writes a signed 16-bit little-endian integer to the standard
output, which can be pipelined to a tool like HackRF for
converting to an analog signal and transmitting.
Putting it all together while adding gain of 30000 gives

let ammod =

C.one_arg_fun @@ fun arr →

am_modulate (message arr) �< carrier �2 0.9 ⊲

map F32.( ( ∗. ) (lit 30000.)) ⊲

iter write_s16_le.invoke

The code can be improved, which gives us the chance
to introduce further strymonas facilities. Recall, sine_wave
maps sin over the in�nite stream of (scaled) samples 0,1,. . . .
There is a real danger that samples eventually over�ow the
32-bit integer counter. Applying sin to progressively big-
ger and bigger arguments seems like a waste. A bit more
sophisticated generator solves both problems:
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let sine_wave (� :int) (5 :float) : F32.t cstream =

let X = (g ∗. 5 ) /. float_of_int � in

infinite (fun k → F32.lit X ⊲ k) ⊲

map_accum F32.(fun acc' s k →

let− acc = C.letl (acc' +. s) in

let− acc = C.letl (C.cond (acc < lit g)

acc (acc −. lit g)) in

k acc acc') (F32.lit 0.) ⊲

map F32.sin.invoke

Here, infinite creates an in�nite stream of X (phase change
per sample) and map_accum integrates this stream while
keeping the samples within 0..g . At the end, we could have
used a more e�cient version of sin that takes advantage of
that fact. The functionmap_accum is the �rst demonstration
that strymonas streams may keep their own state. The so-
called let-operator let− is de�ned as

let (let−) c k = c k

It makes the backend operation C.letl for local bindings in
the target language look like a let-expression.
Strymonas has several backends to emit code in OCaml,

Scala and C – each statically guaranteeing the generated code
compile without errors. In this paper we use the C backend,
based on embedding of C in tagless-�nal style described in
detail in [2]. The generated C code for modulation (with the
more sophisticated sine-wave generator) is as follows:

void ammod(int const n_1, float ∗ const a_2) {

float x_3 = 0.;

for (int i_4 = 0; i_4 < n_1; i_4 += 1) {

float const t_5 = a_2[i_4];

for (int i_6 = 0; i_6 < 70; i_6 += 1) {

float const t_7 = x_3;

float const t_8 = t_7 + 1.0097976;

float const t_9 = (t_8 < 6.2831853 ?

t_8 : t_8 − 6.2831853);

x_3 = t_9;

float const t_10 = sinf(t_7);

float const t_11 = 30000. ∗ ((1. + (0.9 ∗ t_5)) ∗ t_10);

write_s16_le(t_11);

}

}

}

This is what a competent programmer would have writ-
ten by hand. Although the pipeline is purely declarative,
with �rst-class (the argument of flat_map and zip_with) and
higher-order functions the generated code is imperative, with
no closures. We have built the AM modulation pipeline us-
ing map as we pleased (recklessly, one may say), as well as
the complicated-looking combinators like map_accum and
flat_map. The generated code, however, is as simple as it
gets, with no overhead. Map fusion should be expected of any

stream processing library. Strymonas, however, performs fu-
sion in all other cases, some of which are rather challenging
(such as involving both zipping and �at-map).

The reverse process, demodulation, cuts o� the negative
portion of the signal (so-called diode, or envelop detection)
and downsamples it:

let decimate (n:int) : U stream→ U stream = fun st→

assert (n > 1);

let skip = n − 1 in

let− z = initializing_ref C.(int skip) in

st ⊲ Raw.map_raw ~linear:false

C.(fun e k →

if_ (dref z ≤ int 0) ((z := int skip) @. k e) (decr z))

let demodulate (: :int) : F32.t cstream → F32.t cstream =

map F32.(fun x → C.cond (x > lit 0.) x (lit 0.)) ▷

decimate :

(where ▷ is the left-to-right function composition). The func-
tion decimate is the left inverse of upsample, keeping every
= − 1-th sample of the input. The state of the stream is now
very explicit. All streams in strymonas are stateful; program-
mers may introduce their own state, but it must be declared,
using initializing_ref. The combinator map_raw in a lower-
level (internal) strymonas interface is a more general version
of map that permits skipping of samples (in which case the
optional argument ~linear has to be speci�ed, as false9).

More examples can be found in the strymonas repository;
particularly relevant to signal processing are run-length-
encoding and decoding.

3 Windowing

Whereas the AM radio transmission pipeline described in
§2 was complete, the reception was not. First, the signal ac-
quired from the antenna contains transmissions from all
sources (radio, TV, cellular) plus the environment noise.
Therefore, before demodulationwe have to remove all signals
but the one within the transmission band of the desired sta-
tion. The demodulated signal still contains a high-frequency
component, which would produce audible noise after deci-
mation due to aliasing. It has to be �ltered out. Filtering is
the fundamental operation of DSP.

GNU Radio and StreamIt use so-called FIR �lters – which
is what we adopt as well. FIR (Finite Impulse Response) �lters
have the following general form:

~8 =

<−1
∑

:=0

F: G8−:

9which means that that the stream may advance its state but produce no

sample. Such non-linear streams are a special case upon zipping, see [3] for

detail.
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In other words, a sample of the output signal~8 is a weighted
sum of the< most recent input signal samples G8 , G8−1, . . . ,
G8−<+1. TheweightsF: are the �lter coe�cients. The number
< − 1 is called the order of the �lter, and< itself is called
the number of taps. See [9] for much more detail.

Filtering is clearly a form of window processing: viewing
a potentially in�nite stream through a �nite window of the
most recently seen elements. The window may slide over
the stream, or tumble over (i.e., move without overlapping).
Strymonas provides only the most basic stream operations:
map, filter (not to be confused with �ltering as used in DSP),
zip, flat_map. The limited set of operations is chosen so to
support the complete fusion. The richer interface in Fig. 1 is
implemented in terms of the basic. This section shows that
windowing is also implementable in terms of the basic op-
erations, and hence enjoys complete fusion by construction.
We will further see that windowing code is vectorizable.

To achieve high performance, we rely on the general prin-
ciple of partial evaluation: exploiting the available static
information. This is often easier said than done – especially
if we want assured performance. The challenge is to iden-
tify the most useful static information, and to design the
interface to easily, hopefully ‘naturally’, specify it without
burdening the user.

Our �rst design decision is decomposing the �ltering into
the creation of a window and its reduction to a single value,
per the following schema to be made concrete later:

val make_stream : F32.t exp stream →Win.t stream

let fir_filter weights : F32.t cstream → F32.t cstream =

make_stream ▷ map (dot weights)

With the guaranteed complete fusion, such a decomposi-
tion has zero run-time cost. Here make_stream converts a
stream of �oats to a stream of windows. A window, of the
type Win.t, is a representation of the �nite history of the
original stream. The operation dot weights: t → F32.t exp

performs the dot-product of the window with the given ar-
ray of weights. This decomposition separates the tasks of
maintaining the window (stream history) and using the his-
tory – making it easier to write and understand the code. It
also lets us easily develop other operations on windows.
The generated code deals with integers, �oats, etc. Stry-

monas, however, lets us pretend that stream elements may be
composite: tuples, records, etc. Such structured elements are
exclusively the generation-time abstraction. The generated
code does not keep creating and disposing tuples or records
per element: we are statically assured of that because the
backend, Fig. 2, simply does not have facilities to build tuples
of records.
Concretely, the window interface (the type t and the op-

erations on it) is presented in Fig. 3. The window type is
abstract, which allows for di�erent concrete implementa-
tions. The operation reduce ⊙ reduces the window with a
user-speci�ed associative operation ⊙. That is,

module type window = sig

type e (∗ element type: base type ∗)

type t (∗ window type ∗)

val etyp : e tbase (∗ type descriptor of e ∗)

val size : int (∗ statically known, >0 ∗)

val make_stream : e exp stream → t stream

val reduce : (e exp→ e exp→ e exp) →

t→ (e exp→ l stm) → l stm

val dot : U tbase→ (V → U exp) → V array→

(e exp→ e exp → e exp) →

(U exp→ e exp → e exp) →

t→ (e exp→ l stm) → l stm

end

type U window = (module window with type e = U)

(∗ make a window with the given element type,

size and slide ∗)

val make_window : U tbase → int→ int → U window

Figure 3. Windowing interface

make_stream ▷ map_raw (reduce ⊙)

e�ectively computes G8 ⊙ G8−1 ⊙ . . . ⊙ G8−<+1 where < is
the window size. As the name implies, dot trep li� F ⊕ ⊗

computes the dot-product of the window [G8 , . . . , G8−<+1]

with the given array F , with ⊕ and ⊗ as the additive and
multiplicative operations. Therefore,

make_stream ▷ map_raw (reduce trep li�F ( + ) ( ∗ ))

performs the convolution, that is, FIR �ltering. The weights
are speci�ed as a V array: an OCaml rather than the target
language array. In other words, the interface requires the
weights be statically known (as is usually the case in DSP);
an implementation can take advantage of it.

Since the window type t is abstract, there may be di�erent
realizations of it. The concrete instances of thewindow inter-
face are created by make_window, which takes the element
type descriptor trep, the window size and slide, and returns
the �rst-class module of the window interface. Depending
on size and slide, make_window returns di�erent window
implementations, optimized for these parameters. For ex-
ample, when the size is two, the implementation (slightly
abbreviated) is

type t = {prev: e mut; curr: e exp}

let make_stream : e exp stream → t stream = fun st →

let− inited = initializing_ref (C.bool false) in

let− prev = initializing_ref (C.tbase_zero etyp) in

62



Complete Stream Fusion for So�ware-Defined Radio PEPM ’24, January 16, 2024, London, UK

st ⊲ map_raw ~linear:false C.(fun e k →

if_ (dref inited) (

k {prev; curr=e} @.

if slide then prev := e

else inited := bool false

) (

(prev := e) @.

(inited := bool true)

))

let dot _typ li� weights op mul {prev;curr} =

assert (Array.length weights = 2);

C.(op (mul (li� weights.(0)) curr)

(mul (li� weights.(1)) (dref prev))) ⊲

C.letl

Since the window is short, it is represented by the current
element and the reference cell holding the previous element.
The boolean slide tells if the window is sliding, which a�ects
the generated code. This is an example of a conditional code
generation.
One may notice the assert statement, which checks that

the array of weights has two elements (and hence matches
the window size). The assertion failure is a run-time error –
in the generator rather than the generated code. It may be
raised when generating DSP code. If the code is successfully
generated, the check must have passed and the code relies
on the invariant without further run-time checks and errors.
In e�ect, code generation lets us achieve a form of dependent
typing: see [4] for more detailed discussion.
As an example, the following example code builds the

stream of di�erences between consecutive input samples:
G8 − G8−1. The input is given as an array 0:

of_arr 0

⊲ Win.make_stream

⊲ map_raw F32.(Win.dot tbase lit [|−1.;1.|] ( +. ) ( ∗. ))

⊲ iter write_s16_le.invoke

The generated C code shows the expected complete fusion:

void fn(int const n_41, float ∗ a_42) {

bool x_43 = false;

float x_44 = 0.;

for (int i_46 = 0; i_46 < n_41; i_46 += 1) {

float const t_47 = a_42[i_46];

if (x_43) {

float const t_48 = (−t_47) + x_44;

write_s16_le(t_48);

x_44 = t_47;

} else {

x_44 = t_47;

x_43 = true;

}

}

}

The function make_window has many more implementa-
tions: for tumbling windows, for windows sliding by 1, for
large windows, etc. One can see them all in the source code
available in the strymonas repository. Below we show only
one example: low-pass �ltering to use after demodulation.
It is produced by the following fir_filter (this is now the
concrete code rather than the schema):

let fir_filter ?(decimation=0) (weights:float array) :

F32.t cstream→ F32.t cstream =

let ntaps = Array.length weights in

let (module Win) =

make_window F32.tbase ntaps (decimation+1) in

Win.make_stream

▷ map_raw F32.(Win.dot tbase lit weights ( +. ) ( ∗. ))

Decimation (see decimate in §2) is integrated with �lter-
ing: indeed, it is e�ected by sliding the window by a larger
amount. When we pass to fir_filter the weights for a 64-tap
low-pass �lter (and complete the pipeline) we obtain the
following C code:

int x_3 = 0;

int x_4 = 62;

float a_5[126] = {0.,0.,. . . };

float const t_17 = /∗ current sample ∗/

if (x_3 < 63) {

x_4 = (x_4 == 0 ? 62 : x_4 − 1);

(a_5[x_4]) = t_17;

(a_5[x_4 + 63]) = t_17;

x_3++;

} else {

static float a_18[64] =

{1.5361169e−06,1.5800085e−06,. . . };

float x_19 = (a_18[0]) ∗ t_17;

for (int i_20 = 0; i_20 < 63; i_20 += 1)

x_19 = x_19 + ((a_18[i_20 + 1]) ∗ (a_5[x_4 + i_20]));

write_s16_le(x_19);

x_4 = (x_4 == 0 ? 62 : x_4 − 1);

(a_5[x_4]) = t_17;

(a_5[x_4 + 63]) = t_17;

}

The loop has simple boundaries (in fact, constants) and its
indexing expressions are all simple: the loop variable with
an o�set. Such loops are easily vectorizable – and indeed
vectorized by GCC, on an Intel x86-64 platform (given op-
tions: -O3 -march=native -mfpmath=both -�ast-math), as
the following GCC-generated assembly code demonstrates.
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vmulps 32(%r10), %ymm14, %ymm3

vmulps 96(%r10), %ymm12, %ymm15

vmovups 64(%r10), %ymm17

vmovups 128(%r10), %ymm18

decl %edi

vfmadd231ps (%r10), %ymm13, %ymm3

vfmadd231ps .LC17(%rip), %ymm17, %ymm15

vaddps %ymm15, %ymm3, %ymm3

vmovaps .LC18(%rip), %ymm15

vmulps 160(%r10), %ymm15, %ymm15

vfmadd231ps .LC19(%rip), %ymm18, %ymm15

vaddps %ymm15, %ymm3, %ymm3

The loop has been completely unrolled. We also see packed
(SIMD) addition and multiplication vaddps, vmulps, and the
fused multiply-add vfmadd231ps.

4 Evaluation

Using the just presented windowing and �ltering operations,
we have implemented FM radio reception applications and
used them as macro-benchmarks to evaluate strymonas, con-
trasting it with StreamIt and GNU Radio.
All evaluation, on Intel platform, has been performed on

1.8GHz dualcore Intel Core i5, 8 GB DDR3 main memory,
macOS Monterey 12.7. Strymonas-generated C code was
compiled by GCC version 13.2.0. GNU Radio C/C++ code was
compiled by Clang version 14.0.0. The GNU Radio version is
3.10.7.0.

4.1 StreamIt Benchmark

We �rst evaluate and contrast strymonas with the synchro-
nous data�ow system StreamIt [11–13] using FM radio re-
ception as a benchmark.

Like the AM radio described in §2, FM radio alsomodulates
the high-frequency carrier with themessage signal. However,
rather than a�ect the amplitude of the carrier, it a�ects the
frequency. That is, the instantaneous frequency of the output
58 (C) is the deviation from the carrier frequency 52 by the
message signal<(C):

58 (C) = 52 + Δ5<(C)

where Δ5 is the peak frequency deviation; its ratio to the
message signal frequency (or its sampling rate) is called the
modulation index. The output signal is hence

sin

(

g 52C + gΔ5

∫ C

0

<(C)3C

)

FMRadio

Equalizer

BandPassFilter BandPassFilter

GetFloats

LowPassFilter
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Figure 4. StreamIt’s FM radio reception diagram

Demodulation therefore involves a form of di�erentiation,
followed by the envelop detection.10 For the sake of compar-
ing with StreamIt, we used the same demodulation algorithm,
which is expressible in strymonas as:

let fmDemodulator (� :float) (" :float) (1:float) :

F32.t cstream→ F32.t cstream =

let gain = F32.lit (" ∗. (� /. (1 ∗. c ))) in

let (module Win) =

Window.make_window F32.tbase 2 1 in

Win.make_stream

▷ map_raw (Win.reduce F32.( ∗. ))

▷ map_raw C.(fun e→ letl F32.(gain ∗. atan.invoke e))

where " is the the max amplitude of the output, 1 is the
bandwidth and � is the sampling rate. Demodulation is too
a form of window processing.
Overall, FM radio reception is the �ltering to select the

suitable band, demodulation and another �ltering to remove
noise and improve the quality of the resulting audio11 – as
diagrammed in Fig. 4 borrowed from [12].

For meaningful comparison, we implement the same algo-
rithm with the same parameters and the set-up. There is an
immediate problem however: strymonas does not support
split/join (or, duplicate/join) operations apparent in Fig. 4 in
equalization. Equalization is splitting the signal into several
bands, amplifying by a band-speci�c gain and re-combining.
This looks far more complex than LowPassFilter. However,
FIR �lters are linear: a sum or a di�erence of FIR �lters is

10Di�erentiation also ampli�es high-frequency noise, and hence degrades

the signal-to-noise ratio of the audio signal at higher frequencies. To com-

pensate, broadcasters perform so-called pre-emphasis, arti�cially boosting

the high-frequency part of the message signal.
11and also to compensate for the pre-emphasis
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also a FIR �lter (with added or subtracted weights, resp.).
The entire equalizer block in Fig. 4 is hence reducible to a
single FIR �lter, which is what we use.

Thus the FM reception is literally the following three lines:

fir_filter (lowPassFilter � 52DC <) ~decimation:4

▷ fmDemodulator � " 1

▷ fir_filter (equalizer � bands eqCuto� eqGain<)

where the sampling rate � (set to 250 MHz), the cut-o�
frequency 52DC (108 MHz), the bandwidth 1 (10 kHz), the
number of taps< (64), etc., are the standard FM radio pa-
rameters. Here lowPassFilter � 52DC < : float array is a pure
OCaml (that is, with no relation to code generation) function
that computes the coe�cients (the weights) of the low-pass
�lter with the given parameters. Likewise, equalizer com-
putes the weights of the fused equalization �lters.
Our �rst comparison with StreamIt is checking that we

reproduce its input/output behavior. We wrote a naive (and
hence obviously correct) StreamIt interpreter and used it
on the StreamIt FM benchmark code12 to con�rm that the
interpretation of every step of the diagram in Fig. 4 gives
the same, up to numeric precision, output as the strymonas
implementation (on the same inputs): the maximum rela-
tive error for the whole pipeline is 3e-7 (in particular, 6.6e-7
for the low-pass �lter and 5.3e-7 for the equalization, when
compared as independent steps.) We remind that the code
uses 32-bit �oats. Thus, despite the completely di�erent de-
sign (and the di�erent implementation of the equalizer, for
one), strymonas reproduces the input/output behavior of the
StreamIt FM reception program. As an additional check of
correctness, we generated a sample FM radio signal by mod-
ulating a sine wave, fed into the strymonas implementation
and checked the result by ear.
The FM benchmark of StreamIt includes the reference

C code:13 a hand-written and optimized implementation of
the StreamIt pipeline. It is also single-threaded, so that the
comparison with strymonas (on the same synthetic input) is
meaningful. Fig. 5 shows the results: the processing time of 1
million synthetic samples, measured as an average of 20 runs
after 5 warmup runs, on the platform described earlier. We
compiled both StreamIt C code and strymonas-generated
C code using GCC given the �ags "-O3 -march=native -

mfpmath=both -fno-math-errno" (to be called F1) or with
"-�ast-math" added (to be called F2).
We also checked the memory pro�le with valgrind. Both

StreamIt and our code showed constant memory use through-
out the entire processing, with no heap allocation. However,
whereas the former used 590 KiB of stack, our code needed
1 KiB (for �ags F1) or close to zero (for �ags F2). One may
perhaps lower the memory usage of the StreamIt reference

12h�p://groups.csail.mit.edu/cag/streamit/apps/benchmarks/fm/streamit/

FMRadio.str
13h�p://groups.csail.mit.edu/cag/streamit/apps/benchmarks/fm/c/fmref.c
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Figure 5. FM reception Benchmark of strymonas-generated
C code against the baseline: StreamIt hand-written reference
C code. The graph shows processing time (in milliseconds,
lower is better) of 1 million synthetic samples, with 95% CIs.
See text for the explanation of di�erent compiler �ags.

code by tuning its parameter IN_BUFFER_LEN, which how-
ever may a�ect performance or correctness. Since it is not
our code, we left its parameters as they were set.

All in all, C code generated by strymonas from declarative
pipelines shows competitive performance. We now check
and compare performance against the state of the art: GNU
Radio, on the real FM radio application.

4.2 GNU Radio Benchmark

GNU Radio is the state-of-the-art in SDR: a massive toolkit
with many components to assemble a wide variety of SDR
applications, including FM reception with HackRF One board
as input. In fact, an instance of FM reception appears as
the �rst example in the GNU Radio Beginner Tutorial.14

The main research question is whether strymonas is able
to approach or attain the GNU Radio performance on the
example of FM reception.

HackRF One, as many other boards to acquire and digitize
radio signals uses the so-called quadrature demodulation [7].
Quadrature (de)modulation is the technique based on the
observation that any sort of modulation can be represented
as an amplitude modulation of two carrier waves, of the same
frequency and amplitude but shifted by 90◦ in phase, which
are then added up. The two carriers (typically called � and&)
are the real and imaginary components of the complex car-
rier 48g 52C , and ‘modulating the carriers and adding them up’
is in fact complex multiplication. Hence the amplitude modu-
lation with the message signal<(C) is 48g 52C ×(1+`<(C)) and

the frequency modulation is 48g 52C × exp
(

8gΔ5
∫ C

0
<(C)3C

)

.

The HackRF One board performs demodulation: in e�ect
divides the received signal by 48g 52C and returns the result
as a stream of complex numbers.15 Amplitude, frequency
or other demodulation are performed on this stream. The

14h�ps://wiki.gnuradio.org/index.php?title=What_Is_GNU_Radio
15Although obvious, somehow neither various tutorials and textbooks like

[7], nor the HackRF documentation put it this way.
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Figure 6. GNU Radio FM reception diagram, used as a benchmark

output from HackRF is therefore lower in frequency than
the carrier signal – but still tens of times higher than the
audio frequency, and further decimation is needed.

A typical FM reception in GNURadio is described by the di-
agram in Fig. 6 – which is an instance of the diagram from the
GNU Radio tutorial, but adjusted for much higher sampling
sampling and wide-band FM. It also matches the StreamIt
diagram, Fig. 4: �ltering and demodulation. Since the source
is quadrature (complex-number) samples, however, the �l-
tering and demodulation is now in complex domain. That
is not a problem for strymonas: its backend also has the
interface C32, quite similar to F32 on Fig. 2, for 32-bit com-
plex numbers (that is, pairs of 32-bit �oating point-numbers
representing the real and imaginary parts of a complex num-
ber). The FM reception proper, the central part of Fig. 6, is
expressed in strymonas rather literally, as:

fir_filter_ccf (Fir.lowPassFilter 1. �8@ 52DC 5CA )

~decimation:64

▷ demod_quad_fm ((�8@ /. 64.) /. (g ∗. Δ5 ))

where fir_filter_ccf is the C32.t cstream→ C32.t cstream

analogue of fir_filter in §3, using the operations ofC32 rather
than F32. The pure OCaml function Fir.lowPassFilter com-
putes the weights as a float array, using the same algorithm
as GNU Radio’s and the same parameters: gain 1., sampling
rate �8@ of 3.072 MHz and the transition width 5CA of 114 kHz
(which determines the number of taps in the �lter: 65). The
peak frequency deviation Δ5 (75 kHz) and the cut-o� fre-
quency 52DC of 75 kHz are the parameters of FM Broadcasting.
Down-sampling �8@ by 64 gives the output rate of 48 kHz,
which is the standard DVD/HDMI audio sampling rate �< .

The quadrature frequency demodulation code is as fol-
lows:

let demod_quad_fm (gain : float) :

C32.t cstream→ F32.t cstream =

let (module Win) =

Window.make_window C32.tbase 2 1 in

Win.make_stream

▷ map_raw (

Win.reduce C32.(fun G8 G8−1 → G8 ∗. conj G8−1))

▷ map F32.(fun e →

lit gain ∗. fast_atan2f.invoke C32.(imag e) C32.(real e))

It takes quadrature (complex-number) samples but produces
real-value samples (which can then be fed to an audio play-
back program such as �play).
One of the slowest operations in the FM pipeline is the

arc tangent computation (atan2f) during demodulation. The
CPU cycle budget per sample is tight already, but computing
arc tangent takes many cycles and involves switching to
FPU (all other �oating-point operations in the pipeline are
performed in xmm registers, on the SSE/AVX unit). There-
fore, GNU Radio implements a simpli�ed atan2f, using table
look-up with linear interpolation and under the assumptions
of −�ast−math (that is, assuming all �oating-point numbers
normal, and zero unsigned). These are all sound assumptions
common in DSP: after all, samples are inherently noisy, and
high-precision is not necessary. The GNU Radio implementa-
tion of fast_atan2f leaves however much room for improve-
ment. Using the same basic idea, we re-implemented it from
scratch. The average error of our approximate fast_atan2f
(compared to atan2f of the C standard library) is 5e−7 with
the maximum relative error of 4e−6. Looking at the GCC-
compiled code on an Intel x86-64 platform, we see only xmm
registers and even occasionally packed (vector) operations.

Typically input comes from a board like HackRF One. For
reproducibility of the benchmark, however, we use a pre-
recording: 30 seconds of broadcast from a local station 82.5
FM, acquired using HackRF/�mpeg and saved to a �le. With
the sampling rate �8@ of 3.072 MHz, the �le contains 92.16
million 32-bit complex samples; the �le size is hence 737.28
MB. The output of the benchmark is the null sink (which for
strymonas means calling a dummy function for each output
sample, with no bu�ering).
Fig. 7 presents the results of the benchmark.16 The input

is the �le of pre-recorded samples. There are several ways to
access them however. One can pre-load the whole �le into a
pre-allocated array and process it in-memory (pre_load in
Fig. 7). For GNURadio, the array is used through the standard
Vector Source block. Alternatively, one can incrementally
load and process the �le (inc_load in Fig. 7): in the case of
GNU Radio, using the standard File Source block; in the case

16For GNU Radio we measured the runtime from gr::top_block::start() to

gr::top_block::wait() by monotonic clock in the main thread while the top_-

block object had already been created.
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Figure 7. GNU Radio FM reception benchmark: processing
time (in seconds, lower is better) of a pre-recorded 30-second
FM signal, with 95% CIs. GNU Radio is the baseline. See text
for the explanation of di�erent sources.

of strymonas, using the standard C library function fread

(whose bu�er holds 1024 eight-byte samples).
All the results are the averages over 20 runs after 5 warm-

up runs. The platform is macOS as described earlier. GNU
Radio code (which is C++) was compiled as using clang++

as recommended, and even necessary for the hand-tuned
DSP kernels, using �ags -Ofast -march=native. Strymonas-
generated code, which is pure C, is compiled by GCC, with
�ags -Ofast -march=native. (The �ag −Ofast implies −O3
and −�ast−math.)
The benchmark shows that even using the incremental

loading with an ine�cient and synchronous fread and the
null sink with no blocking, strymonas is quite competitive
with GNU Radio. The larger di�erence between memory pre-
loading and incremental loading for strymonas compared
to GNU Radio tells that the sample processing in strymonas
is more e�cient. §5 discusses the di�erences between GNU
Radio and strymonas, which may help understand these
results.

4.3 Real-time FM Radio Reception

Real-time FM reception is one of the “Hello world”–type
applications for GNURadio –whichwe have built, to con�rm
the set-up of GNU Radio and HackRF, on the macOS platform
described earlier. Whether strymonas is capable of real-time
reception is a research question.

Strymonas pipeline for real-time reception uses the same
�ltering and demodulation as that in the benchmark (Fig. 6),
with the input coming from HackRF this time and the output
being�play. The input is similar to inc_load for strymonas in
the benchmark (freadwhose bu�er size is 1024), only instead
of a �le we read from a pipe connected to the hackrf_transfer
tool. The sampling rate is 3.072 MHz. For the output, instead
of a dummy function we call a function that writes a short
�oat on the standard output with no explicit bu�ering (in
binary little-endian format). The standard output is piped to
�play.
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Figure 8.GNU Radio FM reception benchmark on Raspberry
Pi: processing time (in seconds, lower is better) of a pre-
recorded 3-second FM signal, with 95% CIs. GNU Radio is
the baseline. See text for the explanation of di�erent sources.

The strymonas-generated codewas compiled by GCCwith
�ags -Ofast -march=native.

The playback was stable (no sound skipping) but noisy.We
con�rmed that this noise problem was not speci�c to stry-
monas or our approach: GNU Radio, with the same pipeline,
gives playback of the same sound quality.

4.4 FM Radio Reception on Raspberry Pi

To check how portable strymonas performance is, we have
repeated the GNU Radio benchmark and the real-time re-
ception experiments on a low-end single-board computer
Raspberry Pi Zero.
The board has the 1 GHz single-core 32-bit ARMv6 CPU

(AArch32) and 512 MB memory. OS is Raspbian GNU/Linux
11 (bullseye). All C/C++ code was compiled by GCC version
10.2.1. The version of GNU Radio is 3.9.5.0: it is older than
the version we used on macOS, but it is the last version
of GNU Radio fully supported on 32-bit Raspbian as far as
we can check. The strymonas-generated code and the GNU
Radio code were compiled using the �ags -Ofast -mfpu=vfp

-mfloat-abi=hard -march=armv6zk -mtune=arm1176jzf-s.
Fig. 8 presents the results of the benchmark, which, as on

macOS, used pre-recorded samples and the null sink. The �le
of the pre-recorded samples, pre_load, and inc_load are the
same as those on the macOS platform. However, since the
Raspberry Pi Zero has only 512 MB of memory, pre-loading
the whole �le in case of pre_load causes swapping, leading
to a signi�cant decrease in performance. Therefore, we used
a 3-second initial segment of the �le (9.216 million samples,
73.728 MB) for the Raspberry Pi benchmark.

The real-time FM strymonas reception used the HackRF
One board source and the audio sink. Our Raspberry Pi runs
in headless mode (no connected speakers), therefore we set
up PulseAudio to transmit the output over a WiFi network
to a macOS laptop for playback (using aplay, as in §4.3). This
complicated play-out adds its own overhead and latency.
The playback had same sound quality as in §4.3: a little
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unstable and noisy, but intelligible. Thus, althoughwith some
di�culty, we managed to use strymonas for real-time FM
reception even on a lower-end Raspberry Pi. We also tried
the real-time playback with GNU Radio with essentially the
same pipeline: it was unstable, noisy, and unintelligible.

5 Related Work

StreamIt [11–13] is a synchronous data�ow programming
language with static scheduling. Each operator in StreamIt
has to specify how many stream elements it uses and pro-
duces. For example, demodulation ‘pops’ one element from
the input stream, pushes one and peeks two: produces one
element in the output per element of the input, within the
size-2 window. From this rate information, the StreamIt com-
piler determines the execution schedule of operators and
computes the necessary bu�er space (besides performing
a host of optimizations). Strymonas in contrast uses what
amounts to a dynamic scheduling. StreamIt is designed for
parallelism: split/join operations in Fig. 4 is a clear sign. Stry-
monas is intended for single-code single-thread processing.
StreamIt and strymonas hence make very di�erent trade-o�s.
Both are capable of implementing FM radio reception, as we
have seen.
GNU Radio17 is the state of the art in SDR, and is the

most used SDR framework. It is a library of components
(‘blocks’) for all common DSP operations (such as �ltering,
FFT, (de)modulation, wave generation) as well as display,
acquisition and playback. The components can be wired to-
gether in a �owchart to build a complete DSP application.
The wiring is performed by writing C++ code, or, more con-
veniently, in Python or via a graphical interface of GNU
Radio Companion. GNU Radio uses a sophisticated dynamic
scheduling of blocks using threads. The components are not
fused, and hence incur the overhead of function calls, (FP)
register saves and restores, as well as dynamic typing in
some cases. They cannot be optimized together. GNU Radio
hence relies on parallelism and its sophisticated schedul-
ing for performance (as well as VOLK – hand-written and
tuned processing kernels, on some platforms). Strymonas
is single-thread single-core. It guarantees complete fusion:
all processing occurs within one monolithic main loop and
optimized as a whole by a compiler. Splitting a complicated
processing step as a composition of smaller blocks has over-
head in GNURadio but no overhead in strymonas. Strymonas
is also typed: all mismatches in interfaces are �agged as er-
rors at the construction time. The generated code is statically
guaranteed to be well-typed, and hence compiles without
errors.

Ziria [10] is a standalone DSL for wireless system program-
ming. Like strymonas it is structured as a typed higher-layer
language for composing stream pipelines and a lower-level
imperative language for describing operations on stream

17h�ps://github.com/gnuradio/gnuradio

data. The latter is somewhat like C but restricted to ensure
the generation of vectorized code. The Ziria compiler also
implements a variety of domain-speci�c optimizations. Ziria
is a stand-alone language, whereas strymonas is embedded.
Therefore, strymonas takes the full advantage of its host lan-
guage: its module system, standard library, etc. An example
of it was using OCaml to compute weights of various �lters.
Embedding also gives conditional code generation ‘for free’.

6 Conclusions

We have implemented and evaluated a realistic application of
the declarative stream processing library strymonas: FM Ra-
dio reception. In the process we demonstrated that window-
ing processing (underlying digital �ltering) can be retro�tted
into existing strymonas, without compromising its complete
fusion guarantees and attaining high and portable perfor-
mance (across Intel x86-64 and ARM AArch32 architectures).
The �rst lesson, on the concrete example of SDR, is that

type-safety and declarative interface do not have to pre-
clude high-performance. The second take-away message is
that paying attention to the generated code and using spe-
cialization so to generate code that is easily vectorizable –
as well the complete fusion provided by the strymonas –
can compensate for single-core–only processing. Single- vs.
multi-core processing is a trade-o�. We have demonstrated
how this trade-o� can be evaluated within a particular area
of real-time high-frequency signal processing such as FM
radio reception.

As future work, we contemplate further back-ends (code-
generation targets), in particular, Wasm and GPGPU. It is
natural to consider in�nite impulse response (i.e., feedback)
(IIR) �lters. An interesting research direction is high-level,
(semi-) automatic fusing of FIR/IIR �lters. There are also
tasks for strymonas itself: declaratively and concisely sep-
arating initialization (�lling-in windows, estimating signal
DC component and power, etc.) from steady-processing.
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