
MetaOCaml: Ten Years Later

System Description

Oleg Kiselyov[0000−0002−2570−2186]

Tohoku University, Japan
oleg@okmij.org https://okmij.org/ftp/

Abstract. MetaOCaml is a superset of OCaml for convenient code gen-
eration with static guarantees: the generated code is well-formed, well-
typed and well-scoped, by construction. Not only the completed gener-
ated code always compiles; code fragments with a variable escaping its
scope are detected already during code generation. MetaOCaml has been
employed for compiling domain-specific languages, generic programming,
automating tedious specializations in high-performance computing, gen-
erating efficient computational kernels and embedded programming. It
is used in education, and served as inspiration for several other metapro-
gramming systems.
Most well-known in MetaOCaml are the types for values representing
generated code and the template-based mechanism to produce such val-
ues, a.k.a., brackets and escapes. MetaOCaml also features cross-stage
persistence, generating ordinary and mutually-recursive definitions, first-
class pattern-matching and heterogeneous metaprogramming.
The extant implementation of MetaOCaml, first presented at FLOPS
2014, has been continuously evolving. We describe the current design and
implementation, stressing particularly notable additions. Among them
is a new, efficient, the easiest to retrofit translation from typed code
templates to code combinators. Scope extrusion detection unexpectedly
brought let-insertion, and a conclusive solution to the 20-year–old vexing
problem of cross-stage persistence.

Keywords: metaprogramming · staging · code generation

1 Introduction

(BER) MetaOCaml [15, 18] is a superset of OCaml to generate assuredly well-
formed, well-scoped and well-typed code using code templates, also known as
brackets and escapes (see §2 for the extended example). If code is successfully
generated, it is certain to compile. Not only all variables in it are bound: they
are bound as intended (see [13] for the discussion of unintended binding). The
guarantees apply not only to the completed code: ill-formed or ill-typed code
fragments are rejected already by the type checker. MetaOCaml permits unre-
stricted manipulation of open code fragments, including storing them in reference
cells or memo tables. However, as soon as it is detected that a free variable in

such fragment cannot possibly be bound by its intended binder, an exception is
raised with a detailed error message.

MetaOCaml has been employed for compiling domain-specific languages [25,
32, 20], generic programming [30], automating tedious specializations in high-per-
formance computing [17], modeling of digital signal processing, generating effi-
cient computational kernels [9, 2, 19] and embedded programming. It is spreading
into industry.

MetaOCaml is used in metaprogramming courses at the University of Cam-
bridge and Tsukuba University, and in programming language courses at the
University of Montreal, McMaster University, etc. MetaOCaml has had an influ-
ence on the design of Scala 3 metaprogramming facilities and Eliom [27], among
others. An unexpected application is implementing sophisticated type systems
such as session types [21]: fancy (linear, dependent, resource, etc.) types are
treated as ‘run-time tags’ but at a code generation stage. Type errors produce
stack traces and can be debugged with an ordinary debugger.

MetaOCaml is being considered for merging into the mainline OCaml, in
part due to requests from industry. Preliminary steps are already taken.

The first incarnation of MetaOCaml was described at GPCE 2003 [3]. The
current, completely re-designed and re-written version was presented at FLOPS
ten years ago [15]. It was called BER MetaOCaml, to distinguish from the orig-
inal version. The original was unavailable even back then, and has faded by
now. The ‘BER’ qualification has lost its significance, too: it is no longer just
about brackets and escapes. Therefore, we shall refer to the sole extant version
as MetaOCaml.

Since 2014, MetaOCaml has developed significantly: not only has it kept
up with OCaml, it also evolved as a metaprogramming system. Notable mile-
stones include native (native-code, as opposite to bytecode) compilation, off-
shoring, ordinary and mutually recursive let-insertion, first-class patterns, the
conclusive solution to cross-stage persistence. Achieving them required solving
long-standing theoretical problems [19, 16, 31, 24]. Here we touch upon hereto
unpublished features, also requiring theoretical development, focusing on their
design and implementation. More detailed history can be found on the Meta-
OCaml home page.1

Concretely, the paper makes the following contributions:

1. New, efficient, the easiest to retrofit into the extant type-checker translation
from typed code templates to code combinators: §3;

2. Let-insertion as the evolution of scope extrusion: §4;
3. The conclusive solution to cross-stage persistence, specifically, implementing

cross-stage persistence at all types: §5.

We start with the brief introduction to staging and MetaOCaml, and finish
with the related work in §6. MetaOCaml is available from Opam,2 among other
sources. The current version is N114.

1 https://okmij.org/ftp/ML/MetaOCaml.html#history
2 https://opam.ocaml.org/

2

2 Introduction to Staging and MetaOCaml

The standard example to introduce staging – the “Hello World” of metaprogram-
ming – is the specialization of the power function, first described by A.P.Ershov
in 1977 [8]. The well-deserved popularity has made the example a cliche, however.
This section uses a related example: more realistic and designed to introduce
many facilities of MetaOCaml.3

Suppose we are writing code for an embedded system with a low-level CPU
that has no multiplication instruction (or it is too slow). It is worth then to try
to optimize an important particular case: multiplication by a constant, using
shifts and addition. For concreteness, let’s take the following target OCaml code
intended for the device4

let x = read int () in let y = read int () in 5∗(x+1)+y

where read int is a stand-in for reading a sensor value. For optimization we
shall use OCaml as well, now as a metalanguage. To be exact, we shall use
MetaOCaml, which adds to OCaml the facility to represent, or quote code,
using code templates, or brackets .⟨. . . ⟩.:
let c = .⟨ let x = read int () in let y = read int () in 5∗(x+1)+y ⟩.
Brackets are akin to string quotation marks ‘”’. In fact, the above code template
can be converted to a string and written to a file. Unlike strings, however, code
templates have structure: the code within a template must be a well-formed –
moreover, well-typed OCaml code. Since the sample enclosed code has the type
int, the entire template has the type int code. Code templates like above are
values – also called ‘code values’ – and can be named (bound to variables),
passed as arguments and returned from functions. The code within a template
is only quoted (and type-checked), but not evaluated. It can be written to a
file, compiled and then executed – at a ‘future stage’, so to speak. In contrast,
unquoted MetaOCaml code, which is ordinary OCaml, is executed when the
program runs: ‘now’, at the present stage.

To optimize the constant multiplication in c, we change the template to

let copt = .⟨ let x = read int () in let y = read int () in .˜(mul 5 .⟨(x+1)⟩.)+y ⟩.
Here, .˜ (called ‘escape’) marks the hole in the template; the escaped expression
mul 5 .⟨(x+1)⟩. is evaluated to generate the code to plug into the hole. A template
with a hole is no longer a value then. The function mul defined below is a code
generator: it takes the known multiplicand (as integer) and the code for the
other multiplicand (as a code value) and produces the code for the product. The
code value .⟨(x+1)⟩. passed as the second argument to mul is open, with the
free variable “x”. Passing around, splicing, storing in reference cells, etc., open

3 The complete code for the example is available at https://okmij.org/ftp/meta-

programming/tutorial/mult.ml
4 One may quip that a platform with no support for multiplication unlikely supports
OCaml. Later in this section we mention using MetaOCaml for generating C (or
Wasm) instead.

3

code is the the source of MetaOCaml power. In effect, we manipulate (future-
stage) variables symbolically. Although we can splice variables into larger future-
stage expressions, we cannot compare or substitute them, learn their name, or
examine the already generated code and take it apart.5 This pure generativity
of MetaOCaml helps maintain hygiene: open code can be manipulated but the
lexical scoping is still preserved.6

The code generator mul is as follows (the type annotations are optional):

let rec mul (n:int) (x:int code) : int code = match n with
| 0 → .⟨0⟩.
| 1 → x
| n when n < 0 → .⟨ − .˜(mul (−n) x) ⟩.
| n when n land 1 = 1 → .⟨ .˜x + .˜(mul (n−1) x) ⟩.
| n → let (m,k) = factors of two n in .⟨ Int.shift left .˜(mul m x) k ⟩.

where factors of two n computes the representation of the positive integer n as
m2k with m odd, and returns (m,k) as a pair. Brackets and escapes are also
called staging annotations, for a reason: if we erase them from mul, it becomes
the ordinary, well-typed OCaml function for correctly, but slowly, multiplying
two integers.

Before applying mul to copt, one may want to test it. First, let’s see the code
mul generates – in a simple context, provided by the so-called eta (which is often
used in partial evaluation and called ‘the trick’ [6]):

let eta = fun f → .⟨fun x → .˜(f .⟨x⟩.)⟩.
⇝ val eta : (α code → β code) → (α → β) code = <fun>

eta (mul 5)
⇝ − : (int → int) code = .⟨fun x 1 → x 1 + (Int.shift left x 1 2)⟩.
(shown after ⇝ is the response of the MetaOCaml top-level). The expression
eta (mul 5) hence generates the code template of a function. Code values can be
printed, which is what we see in the top-level response. The bound variable is
renamed: important to ensure hygiene [3].

Code values can also be saved as text into a file, to be compiled as ordinary
code. Code values can also be ‘run’: that is, their code can be compiled, linked in
and executed within the generator. It is useful for run-time specialization, and
also for testing. For example, we can evaluate Runcode.run (eta (mul 5)) 7 and
check that it returns 35 as expected.

Returning to the earlier copt, it evaluates to

.⟨let x 1 = read int () in let y 2 = read int () in
((x 1 + 1) + (Int.shift left (x 1 + 1) 2)) + y 2⟩.

5 At first blush, the inability to examine the generated code seems to preclude any
optimizations. Nevertheless, generating optimal code is possible [22, 23, 17, 19].

6 Unless we store open code in reference cells outside the template that binds the
variables. Code generation with effects hence brings in the danger of scope extrusion.
MetaOCaml takes great pains to detect and report scope extrusion: §4.

4

Compared to the original c, it uses only shifts and additions and should be faster.
There is a problem: the expression x 1 + 1 is duplicated. The problem can be
severe for a complicated expression, or even in a call to an imperative function.
To avoid duplication, MetaOCaml lets us bind an expression to a variable, using
letl : α code → ((α code → ω code) → ω code) (local let-insertion). We can also
use a general, floating let-insertion genlet (exp : α code) : α code to bind exp
at the highest possible position determined by data dependencies7 to a fresh
variable, obtaining the code value containing the variable:

.⟨ let x = read int () in let y = read int () in .˜(letl .⟨(x+1)⟩. (mul 5))+y ⟩.
⇝ .⟨let x 1 = read int () in let y 2 = read int () in

(let t 3 = x 1 + 1 in t 3 + (Int.shift left t 3 2)) + y 2⟩.

.⟨ let x = read int () in let y = read int () in .˜(mul 5 (genlet .⟨(x+1)⟩.))+y ⟩.
⇝ .⟨let x 1 = read int () in let t 2 = x 1 + 1 in let y 3 = read int () in

(t 2 + (Int.shift left t 2 2)) + y 3⟩.
We could have used letl or genlet in the implementation of mul. A better idea
is to leave the decision as to what, where and how to let-bind to the user, and
merely require the second argument to mul be the code value that is safe to
duplicate. MetaOCaml provides a special type α val code for such code values,
which which is a subtype of α code. Values of val code types are produced from
literals (with a particular MetaOCaml annotation) or using genletv.8 Here is the
re-written mul:

let rec mul (n:int) (x:int val code) : int code = match n with
| 0 → .⟨0⟩.
| 1 → (x :> int code)
| n when n < 0 → .⟨ − .˜(mul (−n) x) ⟩.
| n when n land 1 = 1 → .⟨ .˜(x :> int code) + .˜(mul (n−1) x) ⟩.
| n → (∗ as before ∗)

to be invoked like mul 5 (.⟨y⟩. [@metaocaml.value]) or mul 5 (genletv .⟨(x+1)⟩.).
The invocation mul 5 .⟨(x+1)⟩. does not type check: .⟨(x+1)⟩. is not of the type
α val code; mul 5 (.⟨(x+1)⟩. [@metaocaml.value]) does not type either since x+1
is not syntactically a value.

One might have wished for the optimization to apply to the original c tem-
plate as it was, without adding mul explicitly by hand. The explicitness is in-
tentional. One has to keep in mind that staging was developed as a push-back
against partial evaluators: a magic box that did everything automatically, and
sometimes to an impressive result (which could inexplicably change upon a small,
seemingly innocent modification). Programmers had no explicit control, or un-
derstanding of what it did. Still, the point that MetaOCaml is too explicit stands.
It is indeed better thought of as an ‘assembler’ of metaprogramming. The end
users should generate code not with code templates but with abstractions suit-
able to their domain – as was demonstrated in [23, 19]. The explicitness of Meta-

7 There is also a way to specify the desired binding locus [24].
8 Thus genlet is genletv followed by the upcast to code.

5

OCaml has an upside: knowing exactly what code will be produced, with no
surprises.

The reader may have noted that an embedded system with no or very slow
hardware multiplication would unlikely run OCaml code. Generating OCaml
code was not a waste however: since the code is simple (as is often the case), it
may be converted to a low-level language such as C, using offshoring [19]. For
our example code, offshoring produces

int fn(){
int const x 26 = read int();
int const t 28 = x 26 + 1;
int const y 27 = read int();
return ((t 28 + (t 28 << 2)) + y 27); }
One may quip that GCC will automatically convert multiplication by con-

stants to shifts and additions (at least on x86 platform). However, an embedded
platform may not be supported by GCC. In fact, our running example is mod-
eled after two student projects of developing a simple DSL for robot control,
using MetaOCaml to generate and then offshore the code. The robot platform
was rather peculiar, underpowered and not supported by GCC.9

3 Implementing MetaOCaml

MetaOCaml is a programming language system, and hence looks like most other
(typed) language systems: the compiler with parsing, type-checking, optimiza-
tion and code-generation passes producing an executable; the standard library;
tools. MetaOCaml is deliberately designed to share, or piggy-back, on the par-
ent OCaml language as much as possible. It is intended to be fully source-
and binary-compatible with OCaml.10 Therefore, MetaOCaml code can use (in
source or binary) any OCaml standard or third-party library and any tool. Com-
piled MetaOCaml code can be linked with any other OCaml code. One may use
MetaOCaml as a daily driver for ordinary OCaml development, as the author
has been doing for over a decade.

MetaOCaml compiler is also engineered to be a small set of patches to the
OCaml front-end (parser and type-checker). The OCaml back-end (optimizer
and code generator) is reused, exactly as is. To this end, MetaOCaml deliberately
avoids extending any OCaml compiler data structures.

When it comes to syntax, MetaOCaml only adds three new tokens: two brack-
ets and the escape, which require all but a simple change to the OCaml grammar.
The brackets and escapes are parsed into so-called extension nodes of the OCaml
AST (a.k.a. Parsetree). One may create them using OCaml’s own notation. For
example, eta in §2 could be entered as

let eta (f: α code → β code) : (α → β) code =

9 The robot is based on Daizen’s e-Gadget CORE, whose development environment
uses MPLAB C compiler for PIC18 MCU by Microchip Technology.

10 It was not the case for the original MetaOCaml.

6

[%metaocaml.bracket fun x → [%metaocaml.escape f [%metaocaml.bracket x]]]

without the bracket-escape syntax. The two notations can be mixed-and-matched.
One may design a source-level preprocessor to create the extension nodes from
any other syntax for code templates. (So far, no candidates have been proposed
however.)

The common approach of implementing quasi-quotation (of which brack-
ets and escapes are an instance), which goes back to Lisp, is translating to
code-generating combinators [3, 5]. In Lisp, this translation is a source-level,
macro-expansion–like transformation. In MetaOCaml, quasi-quotation is typed,
however. It may be surprising that a source-to-source translation for brackets
and escapes is possible, in principle [16]. No changes to OCaml would be needed
then. On the other hand, type errors will be reported in terms of the translated
code, which may be confusing. Any translation to code-generating combinators
needs to associate variables with their stage, and hence to maintain a variable
environment. Handling data types requires type/constructor information. There-
fore, a translation to code-generating combinators has to do some amount of type
checking anyway. All in all, it seems a better idea to do the translation at or
after type checking.

In the original MetaOCaml, the translation to code-generating combinators
was post type-checking. A translation before or after type checking is a sepa-
rate pass, over the entire code. In the current MetaOCaml, the translation is
integrated with type checking, avoiding the overhead of a separate pass and of
scanning the code outside brackets. The cost of specifically MetaOCaml pro-
cessing is hence proportional only to the amount of the bracketed code, which is
normally a small portion of code base. Furthermore, the current type-checking–
integrated translation is designed to be the least invasive, the easiest to retrofit
into an existing type-checker, and hence easily portable. Uncannily, the transla-
tion is using what feels like only two stages to support multiple. As the warm-up,
§3.1 describes the type-checking of staged programs with brackets and escapes,
introducing the notation. §3.2 presents the modification to translate brackets
and escapes away.

3.1 Type-checking Staged Programs

The present and the following section present the theory of MetaOCaml imple-
mentation. They use the standard in theoretical CS mathematical notation and
look theoretical. The notation, however, is the pseudo-code of the actual imple-
mentation. The efficient translation, §3.2, was first designed in the mathematical
notation, to clarify its subtle points. The implementation later transcribed the
notation into OCaml code.

We start with the base calculus: it is the utterly standard simply typed
lambda calculus with integers, shown merely for the sake of notation, particularly
the notation of the typing judgment: Γ ⊢ e ⇒ e : t. The notation makes it explicit
that type checking is type reconstruction: converting an ‘untyped’ expression e
to the type-annotated form e : t – or, in terms of the OCaml type checker,
converting from Parsetree to Typedtree.

7

Variables f, x, y, z
Types t ::= int | t → t
Integer constants i ::= 0, 1, . . .
Expressions e ::= i | x | e e | λx. e
Environment Γ ::= · | Γ, x:t

Variables f, x, y, z
Types t ::= int | t → t | <t>
Integer constants i ::= 0, 1, . . .
Expressions e ::= i | x | e e | λx. e | <e> | ~e
Stage n,m ≥ 0
Environment Γ ::= · | Γ, xn : t

Fig. 1. Base calculus: simply-typed lambda calculus with integers (left) and the corre-
sponding staged calculus (right)

Γ ⊢ i ⇒ i : int

x : t ∈ Γ

Γ ⊢ x ⇒ x : t

Γ ⊢ e ⇒ e : t′ → t Γ ⊢ e′ ⇒ e′ : t′

Γ ⊢ e e′ ⇒ (e : (t′ → t) e′ : t′) : t

Γ, x : t′ ⊢ e ⇒ e : t

Γ ⊢ λx. e ⇒ (λx : t′. e : t) : (t′ → t)

We assume that the initial environment Γinit to type check the whole program
contains the bindings of the standard library functions such as succ, addition,
etc. In the rule for abstraction, one may wonder where does the type t′ come
from. For the purpose of the present paper, one may consider it a ‘guess’. After
all, our subject is not type inference, but staging – to which we now turn.

Figure 1 (right) presents the staged calculus: the Base calculus extended with
bracket <e> and escape ~e expression forms and code types <t>.11 The calculus
(as MetaOCaml) is actually multi-staged : brackets may nest arbitrarily, e.g.,
<<1>>. The level of nesting is called stage. The present stage, stage 0, is outside
of any brackets. An expression at stage 1 or higher is called future-stage. The
typing judgment Γ ⊢n e ⇒ e : t is now annotated with stage n ≥ 0. All variable
bindings in Γ are also annotated with their stage: xn : t.

The rules for integer constants and application remain the same, modulo
replacing ⊢ with ⊢n: in general, most typing rules are unaffected by (or, are
invariant of) staging. This is a good news for implementation: adding staging to
an extant language does not affect the type checker to large extent. Here are the
changed and new rules:

xm : t ∈ Γ
m ≤ n

Γ ⊢n x ⇒ xm : t

Γ, xn : t′ ⊢n e ⇒ e : t

Γ ⊢n λx. e ⇒ (λxn : t′. e : t) : (t′ → t)

Γ ⊢n+1 e ⇒ e : t

Γ ⊢n <e> ⇒ <e : t> : <t>

Γ ⊢n e ⇒ e : <t>

Γ ⊢n+1 ~e ⇒ ~(e : <t>) : t

The type-checker also annotates variable references with the stage, in addi-
tion to the type. A variable bound at stage n may be used at the same stage – or
higher (but not lower!). A present-stage variable may appear within brackets: so-
called cross-stage persistence (or, CSP). As one may expect, bracket increments

11 The code type in the current MetaOCaml is not pre-defined, but is a library type
like Stdlib.Complex.t. Since the set of pre-defined types and values remains the same
as in OCaml, binary compatibility is maintained.

8

liftt : t → <t>
mkidt : string → <t>
mka : <t2 → t1> → <t2> → <t1>

mkl : (<t2> → <t1>) → <t2 → t1>
mkbr : <t> → <<t>>
mkes : <<t>> → <t>

Fig. 2. Code-generating combinators, see §4 for more discussion and possible imple-
mentation. Here liftt is the family indexed by type t, to be discussed in §5.

the stage for its containing expression and escape decrements. Furthermore, es-
capes must appear within a bracket.

For example, <<~(<1>)>> has the type <<int>>, the expression <<λx. ~(f x)>>
is ill-typed but <<λx. ~(f <x>)>> is well-typed in an environment where f is
bound to a function <int> → <int> at stage 0.

After a program is type-checked and converted to the type-annotated form
(a.k.a., Typedtree), we have to compile it. The type-annotated form contains
brackets and escapes, so our compilation has to account for them. One popular
approach [3, 5] is to post-process the type-annotated expression to eliminate all
brackets and escapes. The post-processed Typedtree then has the same form as
in the ordinary OCaml; therefore, we can use the OCaml back-end (optimizer
and code generator) as it is – which is what MetaOCaml does.

Formally, the result of post-processing is the Base calculus enriched with code
types (as well as string types and literals) and whose initial environment contains
the functions in Fig. 2. These code-generating combinators are the producers of
values of the code type. We call this calculus Base1.

3.2 Optimized Translation of Brackets and Escapes

We now present the optimized translation of Staged expressions that converts
brackets and escapes into invocations of code-generating combinators.

Figure 3 presents the translation ⌊e : t⌋ of the interior of outer brackets in
Staged to the code-generating combinators.12 As mentioned earlier, we do not
have to scan the whole staging program, but only the part within brackets. The
interior translation exploits the fact that, surprisingly, the translation does not
depend on the exact future stage number. The case for x0 is discussed in §5.

⌊i : int⌋ = liftint i : <int>
⌊xm+1 : t⌋ = x : <t>

⌊x0 : t⌋ =
{

mkidt ”x” :<t> if x ∈ Γinit

liftt x :<t> otherwise

⌊(e e′) : t⌋ = mka ⌊e⌋ ⌊e′⌋ : <t>
⌊λxn+1 : t′. e : t⌋ = mkl (λx :<t′>. ⌊e : t⌋) : <t′ → t>

⌊~(e : <t>)⌋ = e : <t>

Fig. 3. Translation of the interior of outer brackets into Base2.
The typing judgment is now Γ ⊢n e ⇒ e′ : t where e is an (un-annotated)

expression of the Staged calculus and e′ is the type-annotated expression of Base1
extended with ~e and stage-annotated variables. (Bindings in Γ are also stage-
annotated. For present stage, the annotation may be dropped.) Such extended

12 performed by trx translate of typing/trx.ml

9

calculus is called Base2. Quite unexpectedly, Base2 has no need for brackets; it
only needs escapes, hence the changes to the OCaml Typedtree are minimal. In
fact, there are no changes at all, thanks to Typedtree attributes: an escape is
indicated by a dedicated attribute attached to a Typedtree node.

Γ ⊢n i ⇒ i : int

xm : t ∈ Γ
m ≤ n

Γ ⊢n x ⇒ xm : t

Γ ⊢n e ⇒ e : t′ → t Γ ⊢n e′ ⇒ e′ : t′

Γ ⊢n e e′ ⇒ (e : (t′ → t) e′ : t′) : t

Γ, xn : t′ ⊢n e ⇒ e : t

Γ ⊢n λx. e ⇒ (λxn : t′. e : t) : (t′ → t)

Γ ⊢1 e ⇒ e : t

Γ ⊢0 <e> ⇒ ⌊e : t⌋ : <t>

Γ ⊢n+2 e ⇒ e : t

Γ ⊢n+1 <e> ⇒ ~(mkbr ⌊e : t⌋) : <t>

Γ ⊢0 e ⇒ e : <t>

Γ ⊢1 ~e ⇒ ~(e : <t>) : t

Γ ⊢n+1 e ⇒ e : <t>

Γ ⊢n+2 ~e ⇒ ~(mkes ⌊e : <t>⌋) : t
Fig. 4. Type-checking and translation of Staged into Base2.

Figure 4 presents the pseudo-code of the optimized translation integrated
with type reconstruction. The figure makes it clear how the Base type recon-
struction – that is, the Typedtree construction in the ordinary OCaml – has to be
modified for staging. Most of the rules (see constant and application rules) are
unmodified. We still need to maintain the stage (as a global mutable variable in
the current implementation). The rule for lambda (and other binding forms) has
to annotate the bound variable with its stage as it is put into the environment.
We do it by adding an attribute bearing the stage to the value description of
the variable. The variable rule has to check that the stage of the variable is less
than or equal the current stage, and to put the stage-annotated variable into
Typedtree. In the implementation, nothing needs to be done for the latter: The
Texp ident node of the Typedtree carries the value description taken from the envi-
ronment, which already has the stage attribute. The only significant changes are
the rules for brackets and escapes (represented in Parsetree as extension nodes).

The selective translation ⌊−⌋ is indeed done only on the parts of the overall
Typedtree that represent future-stage sub-expressions. Therefore, when compiling
plain OCaml programs, MetaOCaml imposes no overhead: MetaOCaml-specific
processing is not even activated.

Proposition If Γ ⊢n e ⇒ e : t in the Staged calculus then Γ ⊢n e ⇒ e′ : t in the
optimized translation.

Proposition If Γ ⊢n e ⇒ e′ : t, then e′ has no nested escapes.

Corollary If Γinit ⊢0 e ⇒ e′ : t then e′ is strictly a Base1 expression: it contains
no escape nodes or stage-annotated bindings. The type reconstruction hence
gives the ordinary OCaml Typedtree, which can then be processed by the OCaml
back-end as is.

Theorem If Γ ⊢0 e ⇒ e′ : t then Γ ⊢ ē′ ⇒ e′ : t in Base1 where ē′ is e′ with all
type annotations removed.

10

Evaluation The integrated translation sounds almost too good to be true.
The goal of the formalization, and of the main theorem, is to convince that
the translation is correct. It is implemented in the current MetaOCaml (version
N114) – by literally transcribing the pseudo-code of Fig. 4 into OCaml – resulting
in simpler and shorter code. It worked on the first try, passing all tests in the
extensive MetaOCaml testing suite. No issues have been reported.

Since the very beginning BER MetaOCaml took pains to make the Typedtree
after the translation look exactly as in the plain OCaml. Time has showed that it
was wise. We remind that MetaOCaml is designed to use the OCaml back-end as
is. The OCaml back-end has been constantly enhanced with new optimizations
and facilities (FLambda, Multi-core, to name the biggest). MetaOCaml comes
to benefit from these optimizations automatically.

4 Let-insertion

As we have seen in §2, let-insertion (particularly, genlet) is useful for effecting
sharing and avoiding code duplication. The importance of let-insertion has been
recognized early on in partial evaluation [11, §5.5.4]. It is commonly accom-
plished via continuation-passing (monadic) style [1, 4, 28] or, more conveniently,
via delimited control [26, 12]. In fact, the primary motivation for the OCaml de-
limited control library delimcc [14] was implementing genlet. Surprisingly, genlet
turns out realizable in MetaOCaml much simpler, without any delimited con-
trol, piggy-backing on what MetaOCaml has had for a decade: detecting scope
extrusion.

Detecting scope extrusion (that is, open code whose free variables shall re-
main unbound) was introduced in version N103 and described in [15]. Here is a
brief reminder, using the formalization from the previous section. Fig. 2 intro-
duced code-generating combinators, but did not say what they generate. Indeed,
how is the type <t> realized, what exactly is the code value? As §2 has hinted, a
code value (code template) is essentially a string containing code text. An easier
to generate representation is an algebraic data type [3]. An algebraic data type
representing code is nothing but the abstract syntax tree (AST), called Parsetree
in the OCaml compiler. From the very beginning and up until N103, code values
in MetaOCaml were Parsetree.expression values.

In the formalism of §3.1, the AST corresponding to Base can be described
by the following OCaml data type13

type vname = string
type ast = Int of int | Var of vname | App of ast ∗ ast | Lam of vname ∗ ast

The code-generating combinators are then

type α code = ast
let mkid (n:vname) : α code = Var n
let mka (e1: (α → β) code) (e2: α code) : β code = App (e1,e2)

13 For simplicity, we hereafter restrict ourselves to two stages, as most common. There-
fore, the generated code contains no staging annotations.

11

let mkl (f: α code → β code) : (α→β) code = let v = gensym () in Lam (v, f (Var v))

The function mkl (whose real MetaOCaml name is build fun simple) chooses a
fresh bound variable name, as explained in [3].

Such simple implementation does not suffice for detecting scope extrusion:
we need to keep track of free variables. To this end, version N103 introduced an
annotated AST:

type annot
type α code = annot ∗ ast
let mkid n = (empty, Var n)
let mka (a1,e1) (a2,e2) = (merge a1 a2, App (e1,e2))

where annot is a monoid with the unit empty and the operation merge. Specif-
ically, annot is a set of variable names that are free in the code value. The
function mkl, which introduces a new variable name, also dynamically binds it
for the dynamic extent of generating its body. It uses a dynamic binding facility

val dlet : vname → (unit → α) → α
val dbound : vname → bool

to dynamically bind a given vname for the duration of executing a thunk, and
check if vname is dynamically bound. The scope extrusion check is hence the
check that each free variable occurs only within the dynamic extent of mkl that
introduced it. Concretely,

type annot = VSet.t (∗ set of variable names ∗)
let empty = VSet.empty
let merge a1 a2 = if VSet.all dbound a1 && VSet.all dbound a2 then VSet.union a1 a2

else error ”Scope extrusion”
let mkl f = let v = gensym () in

let (a,c) = dlet v (fun () → f (VSet.singleton v, Var v)) in
(VSet.remove v a, Lam (v, c))

Every code-generating combinator performs the scope extrusion check on its
arguments (for mka above, the check is integrated into the merge operation).
In reality, MetaOCaml uses a priority heap rather than set; it also takes great
pains to generate a detailed error message upon scope extrusion. See [15] for
more detail, and also the discussion on lexical scoping in the generated code
corresponding to dynamic scoping in the generator.

Turning to let-insertion, recall from §2 that genlet (exp : α code) : α code
binds exp ‘somewhere above’ to a fresh variable and returns the code value
containing the variable. One may say that genlet exp creates a promise of a let-
binding of a fresh v to exp – so-called ‘virtual let-binding’ – and returns Var v.
This is the key idea of the implementation. The virtual let-binding is carried as
yet another annotation to the code value. Concretely, annot is extended to

type vbindings = (vname ∗ (annot ∗ ast)) list
and annot = VSet.t ∗ vbindings

The merge function is extended to merge vbindings – checking, as before, for
scope extrusion and merging free variable sets. The code generating combinator
mka (and many more like it in the actual MetaOCaml) remain unchanged. The

12

let-insertion introduces the virtual binding, which is then propagated (floats) as
composite expressions form and their annotations are merged:

let genlet exp = let v = gensym () in ((VSet.empty,[(v,exp)]),Var v)

The combinator mkl now has to check if any expi in list of virtual bindings
(vi,expi) contains the variable that is bound by that mkl. If so, the corresponding
virtual binding has to be converted to the real let-binding; it cannot be allowed to
float further as scope extrusion occurs otherwise. We see now where exactly the
let-binding corresponding to genlet exp will be inserted: right under the closest
binder that binds a variable that is free in exp (or at the top level, if exp is
closed).

There is a bit more than meets the eye: for example, the exp in genlet exp
may itself use genlet, which induces a dependency and an order on let-bindings.

Evaluation The implementation of let-insertion followed the just presented
outline and was relatively short, changing hardly any code, because the code
annotation infra-structure was already in place and could be reused. The exten-
sion to mutually-recursive let-insertion [24] proved to be just as straightforward.
Also straightforward is the explicit control of the insertion locus [24].

Let-insertion proved to be a valuable addition to MetaOCaml, appearing
quite often in code bases: see, e.g., the scalar promotion optimization in [19].

5 Cross-stage persistence

Looking back to the fragment of mul code from §2:
let (m,k) = factors of two n in .⟨ Int.shift left .˜(mul m x) k ⟩.
we see k appearing inside the bracket but bound outside. The bracket con-
tains one more free variable: Int.shift left, bound in the OCaml standard library.
Program variables appearing in templates are called “cross-stage persistence”
(CSP).14 Cross-stage persistence is ubiquitous: for one, all references to stan-
dard library are CSPs.

The example highlights the two varieties of CSP: global, (standard) library
identifiers; and locally-bound identifiers. The difference is visible in the trans-
lation rules for ⌊x0 : t⌋ in Fig. 3. For our example, the translation to code-
generating combinators gives:

let (m,k) = factors of two n in mka (mka (mkid ”Int.shift left”) (mul m x)) (liftint k)

The generated code will hence include the identifier Int.shift left, which, when
the code is compiled, will be taken to refer to the standard library function –
the same function it refers to in the generator. Globally-bound CSPs are hence
references to the libraries available at the present stage and assumed available
at a future stage: the ‘common knowledge’ so to speak.15

14 We will take ‘CSP’ to also abbreviate ‘cross-stage–persistent variable’.
15 A pun on the modal logic of code types [7].

13

Locally-bound CSPs, in contrast, are by their very nature valid only within
their local scope and are not accessible from other code. Their values have to be
incorporated into the generated code: somehow represented in AST and eventu-
ally converted to text. This lifting, or serialization, is performed by the family
of functions liftt of Fig. 2. Serialization clearly cannot be done the same way for
all types. For integers, liftint n is just Int n. Booleans, strings, and other easily
serializable values are similar. Users may also define their own lifting functions
[17, §3.2.1].

On the other hand, when t is a function, reference, input channel, etc., type,
liftt is a puzzle. It is not clear if such a lifting is possible – or even makes sense.
Deepens the puzzle is the polymorphic

let polylift : α → α code = fun x → .⟨x⟩.
which has been definable in MetaOCaml since the very beginning. This definition
looks like a type-uniform serialization, which is impossible.

The long-standing, vexing puzzle has been finally solved in the latest version
of MetaOCaml – using let-insertion. That is, liftt v for any non-serializable t is
implemented essentially as genlet: choosing a fresh identifier cpsi and returning
Var ”cpsi” annotated with a special virtual let-binding of cpsi to v. Unlike the
ordinary virtual let-binding, its rhs is not necessarily of code type. It is certain
however to contain no free future-stage variable; therefore, it always floats to the
very top. For example,

.⟨ .˜(let f = fun x → x in .⟨f⟩.) 1⟩.
when translated and evaluated becomes the code value that is the AST

App (Var ”csp1”, Int 1)

annotated with the special virtual let-binding of csp1 to fun x → x. Such code
value may be thought of as a ‘staged-separated’ let-binding

let csp 1 = fun x → x in .⟨ csp 1 1 ⟩.
whose binding is in the present-stage but the body is in the future. More con-
structively, it may be thought of as a pair of the present-stage value fun x → x
and the code value .⟨fun csp 1 → csp 1 1⟩.. When such a code value is Runcode.run,
the code fun csp 1 → csp 1 1 is compiled and then applied to the first component
of the pair (the identity function in our case). One may say that the binding and
the body of a stage-separated let-expression are re-united. When a CSP code
value is saved into a file, it is saved as a function taking the CSP value as the
argument. When eventually invoked, the programmer will have to somehow ar-
range for the appropriate value (e.g., recomputed, etc.) All in all, in the presence
of arbitrary CSP, a code value is a ‘staged’ closure, over CSPs.

Evaluation CSPs are ubiquitous: although hardly ever mentioned in staging
literature, no practical metaprogramming system may afford to ignore them. The
experience has shown that locally-bound CSPs at function types are surprisingly
common, in cases of run-code specialization. In earlier versions of MetaOCaml,
such CSPs have been supported via a horrible hack, which only worked for byte-

14

code and resulted in printing of non-compilable code. At long last, the problem
has been solved.

CSPs are so common that they are used in the MetaOCaml implementation
itself. For a simple code template, rather than translating it to the code that
builds AST at the generator run-time, we may build the AST at the compila-
tion time. AST is serializable, and lifted as CSP from the compile-time to the
generator run-time. The generator then accesses it as a literal constant.

The implementation of MetaOCaml hence uses itself. The code typing/trx.
ml that contains the type-checking, translation and code-generation combinators
is used both at type-checking and code-generation time. In particular, the CSP
implementation is used at both times. One gets the feeling of a self-specializer,
familiar from Futamura projections.

6 Related work

Due to the lack of space we have to refer to [15] for the detailed discussion of
related metaprogramming systems.

Here we have to mention the very recent MacoCaml [29]: a macro-processor
for OCaml based on code templates. Unlike MetaOCaml but like Template
Haskell, Scala 3 or Zig, it generates code at compile-time to be used later in
compilation. MacoCaml has to deal with the difficult problem of modules and
module abstractions – which MetaOCaml skirts since it does not support code
templates with module expressions.16 On the other hand, MetaOCaml is more
than just brackets and escapes.

7 Conclusions

Ten years have passed since MetaOCaml was first presented [15]. They have seen
its increased use in research, education and even industry. It is hard to tell what
the next ten years may bring. There is no shortage of problems to solve, however,
with MetaOCaml, and in the further development of MetaOCaml. Among the
latter are significant theoretical challenges: unsound interaction of template-
based metaprogramming with polymorphism (for which [16] outlined a research
program) and GADTs.17

Acknowledgments. I am very grateful to the users of MetaOCaml for their interest
and encouragement, and also comments and suggestions. I particularly thank Jeremy
Yallop for many fruitful discussions and valuable suggestions. Comments by anonymous
reviewers are gratefully acknowledged. This work was partially supported by JSPS
KAKENHI Grants Numbers 17K12662, 18H03218, 21K11821 and 22H03563.

16 It is not clear if code generation of modules is needed: [10] tried to find a compelling
example but ended up implementing all candidates in the ordinary MetaOCaml.

17 For more detail on the planned features and challenges, see NOTES.txt in the Meta-
OCaml distribution.

15

Disclosure of Interests. The author has no competing interests to declare.

References

1. Bondorf, A.: Improving binding times without explicit CPS-conversion. In: Lisp &
Functional Programming. pp. 1–10 (1992). https://doi.org/10.1145/141471.141483

2. Bussone, G.: Generating OpenMP code from high-level specifications (Aug 2020),
Internship report to ENS

3. Calcagno, C., Taha, W., Huang, L., Leroy, X.: Implementing multi-stage languages
using ASTs, gensym, and reflection. In: GPCE. pp. 57–76. No. 2830 in Lecture
Notes in Computer Science (22–25 Sep 2003). https://doi.org/10.1007/978-3-540-
39815-8˙4

4. Carette, J., Kiselyov, O.: Multi-stage programming with functors and monads:
Eliminating abstraction overhead from generic code. Science of Computer Pro-
gramming 76(5), 349–375 (2011). https://doi.org/10.1016/j.scico.2008.09.008

5. Chen, C., Xi, H.: Meta-programming through typeful code represen-
tation. Journal of Functional Programming 15(6), 797–835 (2005).
https://doi.org/10.1017/S0956796805005617

6. Danvy, O., Malmkjær, K., Palsberg, J.: Eta-expansion does The Trick. ACM Trans-
actions on Programming Languages and Systems 18(6), 730–751 (1996)

7. Davies, R., Pfenning, F.: A modal analysis of staged computation. Journal of the
ACM 48(3), 555–604 (May 2001)

8. Ershov, A.P.: On the partial computation principle. IPL: Information Processing
Letters 6(2), 38–41 (1977)

9. Hirohara, K.: Generating GPU kernels from high-level specifications using Meta-
OCaml (Feb 2019), Tohoku University, Master Thesis, in Japanese

10. Inoue, J., Kiselyov, O., Kameyama, Y.: Staging beyond terms: prospects and
challenges. In: Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM. pp. 103–108. ACM (Jan 2016).
https://doi.org/10.1145/2847538.2847548

11. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs, NJ (Jun 1993), http://www.itu.dk/
people/sestoft/pebook/pebook.html

12. Kameyama, Y., Kiselyov, O., Shan, C.c.: Shifting the stage: Staging with de-
limited control. Journal of Functional Programming 21(6), 617–662 (2011).
https://doi.org/10.1017/S0956796811000256

13. Kameyama, Y., Kiselyov, O., Shan, C.c.: Combinators for impure yet hygienic code
generation. Science of Computer Programming 112 (part 2), 120–144 (Nov 2015).
https://doi.org/10.1016/j.scico.2015.08.007

14. Kiselyov, O.: Delimited control in OCaml, abstractly and concretely. Theor. Comp.
Sci. 435, 56–76 (Jun 2012). https://doi.org/10.1016/j.tcs.2012.02.025

15. Kiselyov, O.: The design and implementation of BER MetaOCaml - system de-
scription. In: FLOPS. pp. 86–102. No. 8475 in Lecture Notes in Computer Science,
Springer (2014). https://doi.org/10.1007/978-3-319-07151-0˙6

16. Kiselyov, O.: Generating code with polymorphic let: A ballad of
value restriction, copying and sharing. EPTCS 241, 1–22 (2017).
https://doi.org/10.4204/EPTCS.241.1

17. Kiselyov, O.: Reconciling Abstraction with High Performance: A MetaOCaml
approach. Foundations and Trends in Programming Languages, Now Publishers
(2018). https://doi.org/10.1561/2500000038

16

18. Kiselyov, O.: BER MetaOCaml N114. https://okmij.org/ftp/ML/MetaOCaml.

html (May 2023)
19. Kiselyov, O.: Generating C: Heterogeneous metaprogramming sys-

tem description. Sci. Comput. Program. 231, 103015 (2023).
https://doi.org/10.1016/J.SCICO.2023.103015

20. Kiselyov, O., Biboudis, A., Palladinos, N., Smaragdakis, Y.: Stream fusion, to
completeness. In: POPL ’17: Conference Record of the Annual ACM Symposium
on Principles of Programming Languages. pp. 285–299. ACM Press, New York
(Jan 2017). https://doi.org/10.1145/3009837

21. Kiselyov, O., Imai, K.: Session types without sophistry. In: Functional and Logic
Programming. Lecture Notes in Computer Science, vol. 12073, pp. 66–87. Springer
International Publishing (2020). https://doi.org/10.1007/978-3-030-59025-3˙5

22. Kiselyov, O., Swadi, K.N., Taha, W.: A methodology for generating verified com-
binatorial circuits. In: EMSOFT. pp. 249–258 (27–29 Sep 2004)

23. Kiselyov, O., Taha, W.: Relating FFTW and split-radix. In: ICESS. pp. 488–493.
No. 3605 in Lecture Notes in Computer Science (2005)

24. Kiselyov, O., Yallop, J.: let (rec) insertion without effects, lights or magic. CoRR
abs/2201.00495 (2022). https://doi.org/10.48550/arxiv.2201.00495

25. Krishnaswami, N.R., Yallop, J.: A typed, algebraic approach to parsing.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI. pp. 379–393. ACM (2019).
https://doi.org/10.1145/3314221.3314625

26. Lawall, J.L., Danvy, O.: Continuation-based partial evaluation. In: Lisp & Func-
tional Programming. pp. 227–238 (1994). https://doi.org/10.1145/182409.182483

27. Radanne, G.: Tierless Web programming in ML. Ph.D. thesis, Université Sorbonne
Paris Cité, Paris, France (Nov 2017)

28. Swadi, K., Taha, W., Kiselyov, O., Pašalić, E.: A monadic approach for avoiding
code duplication when staging memoized functions. In: PEPM. pp. 160–169 (2006)

29. Xie, N., White, L., Nicole, O., Yallop, J.: MacoCaml: Staging composable
and compilable macros. Proc. ACM Program. Lang. 7(209), 604—-648 (2023).
https://doi.org/10.1145/3607851

30. Yallop, J.: Staged generic programming. Proc. ACM Program. Lang. 1(ICFP),
29:1–29:29 (2017). https://doi.org/10.1145/3110273

31. Yallop, J., Kiselyov, O.: Generating mutually recursive definitions. In: Proceed-
ings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Pro-
gram Manipulation. pp. 75–81. PEPM 2019, ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3294032.3294078

32. Yallop, J., Xie, N., Krishnaswami, N.: flap: A deterministic parser with
fused lexing. Proc. ACM Program. Lang. 7(PLDI), 1194–1217 (2023).
https://doi.org/10.1145/3591269

17

